ﻻ يوجد ملخص باللغة العربية
We investigate the integrability of generalized nonautonomous nonlinear Schrodinger (NLS) equations governing the dynamics of the single- and double-component Bose-Einstein condensates (BECs). The integrability conditions obtained indicate that the existence of the nonautonomous soliton is due to the balance between the different competition features: the kinetic energy (dispersion) versus the harmonic external potential applied and the dispersion versus the nonlinearity. In the double-component case, it includes all possible different combinations between the dispersion and nonlinearity involving intra- and inter-interactions. This result shows that the nonautonomous soliton has the same physical origin as the canonical one, which clarifies the nature of the nonautonomous soliton. Finally, we also discuss the dynamics of two-component BEC by controlling the relevant experimental parameters.
Using the generalized perturbation reduction method the scalar nonlinear Schrodinger equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is o
Using the generalized perturbation reduction method the Hirota equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is obtained. The component
In this work, we employ the generalized perturbation reduction method to find the two-component vector breather solution of the cubic Boussinesq equation $U_{tt} - C U_{zz} - D U_{zzzz}+G (U^{3})_{zz}=0$. Explicit analytical expressions for the shape
The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the so
The generalized perturbative reduction method is used to find the two-component vector breather solution of the nonlinear Klein-Gordon equation. It is shown that the nonlinear pulse oscillates with the sum and difference of frequencies and wave numbe