ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-component nonlinear wave of the Hirota equation

207   0   0.0 ( 0 )
 نشر من قبل Guram Adamashvili
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف G. T. Adamashvili




اسأل ChatGPT حول البحث

Using the generalized perturbation reduction method the Hirota equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is obtained. The components of the pulse oscillate with the sum and difference of the frequencies and the wave numbers. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse are presented.



قيم البحث

اقرأ أيضاً

100 - G. T. Adamashvili 2021
In this work, we employ the generalized perturbation reduction method to find the two-component vector breather solution of the cubic Boussinesq equation $U_{tt} - C U_{zz} - D U_{zzzz}+G (U^{3})_{zz}=0$. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse oscillating with the sum and difference of the frequencies and wave numbers are obtained.
131 - G. T. Adamashvili 2021
The generalized perturbative reduction method is used to find the two-component vector breather solution of the Born-Infeld equation $ U_{tt} -C U_{zz} = - A U_{t}^{2} U_{zz} - sigma U_{z}^{ 2} U_{tt} + B U_{z} U_{t} U_{zt} $. It is shown that the so lution of the two-component nonlinear wave oscillates with the sum and difference of frequencies and wave numbers.
72 - G. T. Adamashvili 2020
Using the generalized perturbation reduction method the scalar nonlinear Schrodinger equation is transformed to the coupled nonlinear Schrodinger equations for auxiliary functions. A solution in the form of a two-component vector nonlinear pulse is o btained. The components of the pulse oscillate with the sum and difference of the frequencies and wave numbers. Explicit analytical expressions for the shape and parameters of the two-component nonlinear pulse are presented.
192 - A. Zabrodin 2007
We consider GL(K|M)-invariant integrable supersymmetric spin chains with twisted boundary conditions and elucidate the role of Backlund transformations in solving the difference Hirota equation for eigenvalues of their transfer matrices. The nested B ethe ansatz technique is shown to be equivalent to a chain of successive Backlund transformations undressing the original problem to a trivial one.
We study dynamics of two coupled periodically driven oscillators. The internal motion is separated off exactly to yield a nonlinear fourth-order equation describing inner dynamics. Periodic steady-state solutions of the fourth-order equation are dete rmined within the Krylov-Bogoliubov-Mitropolsky approach - we compute the amplitude profiles, which from mathematical point of view are algebraic curves. In the present paper we investigate metamorphoses of amplitude profiles induced by changes of control parameters near singular points of these curves. It follows that dynamics changes qualitatively in the neighbourhood of a singular point.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا