ترغب بنشر مسار تعليمي؟ اضغط هنا

Electric Field in Materials, Containing Conductive Nanofibers

261   0   0.0 ( 0 )
 نشر من قبل Yuri Kornyushin
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Yuri Kornyushin




اسأل ChatGPT حول البحث

Concentrated electric field and its energy in materials, containing nanofibers, are discussed. It is shown that the electric field in the vicinity of the end of a fiber is proportional to the external applied field and to the fiber length, whilst it is inversely proportional to the fiber diameter. Specific electrostatic energy of a fiber in a sample under the action of external applied field is calculated. This energy appears to be negative and proportional to the ratio of the fiber length to its diameter. This means that longer fibers are more stable than the shorter ones.



قيم البحث

اقرأ أيضاً

76 - Lan Dong , Qing Xi , Jun Zhou 2019
We report phonon renormalization induced by an external electric field E in ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers through measuring the E-dependent thermal conductivity. Our experimental results are in exc ellent agreement with the theoretical ones derived from the lattice dynamics. The renormalization is attributed to the anharmonicity that modifies the phonon spectrum when the atoms are pulled away from their equilibrium positions by the electric field. Our finding provides an efficient way to manipulate the thermal conductivity by tuning external fields in ferroelectric materials.
99 - Zeyu Jiang , Damien West , 2020
A general formula for the average vector potential of bulk periodic systems is proposed and shown to set the boundary conditions at magnetic interfaces. For antiferromagnetic materials, the study reveals a unique relation between the macroscopic pote ntial and the orientation-dependent magnetic quadrupole, as a result of the different crystalline and magnetic symmetries. In particular, at surfaces and interfaces of a truncated bulk without inversion and time-reversal symmetries, the average vector potential exhibits a discontinuity, which results in an interfacial magnetic field. In general, however, due to the surface and interface electronic and atomic relaxations, additional magnetization may result. For the experimentally-observed magnetoelectric antiferromagnets, in particular, our symmetry analysis suggest that the relaxation effects could well be a system response to the presence of such a potential discontinuity.
204 - Z. X. Feng , H. Yan , Z. Q. Liu 2018
Using an electric field instead of an electric current (or a magnetic field) to tailor the electronic properties of magnetic materials is promising for realizing ultralow energy-consuming memory devices because of the suppression of Joule heating, es pecially when the devices are scaled to the nanoscale. In the review, we summarize recent results on the giant magnetization and resistivity modulation in a metamagnetic intermetallic alloy - FeRh, which is achieved by electric-field-controlled magnetic phase transitions in multiferroic heterostructures. Furthermore, the approach is extended to topological antiferromagnetic spintronics, which is currently receiving attention in the magnetic society, and the antiferromagnetic order parameter has been able to switch back and forth by a small electric field. In the end, we envision the possibility of manipulating exotic physical phenomena in the emerging topological antiferromagnetic spintronics field via the electric-field approach.
The emergence of two-dimensional (2D) materials has attracted a great deal of attention due to their fascinating physical properties and potential applications for future nanoelectronic devices. Since the first isolation of graphene, a Dirac material , a large family of new functional 2D materials have been discovered and characterized, including insulating 2D boron nitride, semiconducting 2D transition metal dichalcogenides and black phosphorus, and superconducting 2D bismuth strontium calcium copper oxide, molybdenum disulphide and niobium selenide, etc. Here, we report the identification of ferromagnetic thin flakes of Cr2Ge2Te6 (CGT) with thickness down to a few nanometers, which provides a very important piece to the van der Waals structures consisting of various 2D materials. We further demonstrate the giant modulation of the channel resistance of 2D CGT devices via electric field effect. Our results illustrate the gate voltage tunability of 2D CGT and the potential of CGT, a ferromagnetic 2D material, as a new functional quantum material for applications in future nanoelectronics and spintronics.
We find that in BaTiO$_3$ the phonon angular momentum is dominantly pointing in directions perpendicular to the electrical polarization. Therefore, external electric field in ferroelectric BaTiO$_3$ does not control only the direction of electrical p olarization, but also the direction of phonon angular momentum. This finding opens up the possibility for electric-field control of physical phenomena that rely on phonon angular momentum. We construct an intuitive model, based on our first-principles calculations, that captures the origin of the relationship between phonon angular momentum and electric polarization.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا