ﻻ يوجد ملخص باللغة العربية
Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a five-fold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, while regular arrays showed only a sharp peak in Ic(Phi) at the matching flux Phi1 and quasiperiodic arrays provided a much broader maximum at Phi<Phi1, both types of pinning arrays turned out to be inefficient for fluxes larger than Phi1. We demonstrate theoretically and experimentally the enhancement of Ic(Phi) for Phi>Phi1 by using non-Penrose quasiperiodic pinning arrays. This result is based on a qualitatively different mechanism of flux pinning by quasiperiodic pinning arrays and could be potentially useful for applications in superconducting micro-electronic devices operating in a broad range of magnetic fields.
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of
We study the critical depinning current J_c, as a function of the applied magnetic flux Phi, for quasiperiodic (QP) pinning arrays, including one-dimensional (1D) chains and two-dimensional (2D) arrays of pinning centers placed on the nodes of a five
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition tempe
Polycrystalline La2-xPrxCa2xBa2Cu4+2xOz (LPCaBCO) compounds with x = 0.1 - 0.5 were synthesized by solid-state reaction method and studied by room temperature X-ray diffraction, dc resistivity, dc magnetization and iodometry. The superconducting tran
Doping of MgB2 by nano-SiC and its potential for improvement of flux pinning was studied for MgB2-x(SiC)x/2 with x = 0, 0.2 and 0.3 and a 10wt% nano-SiC doped MgB2 samples. Co-substitution of B by Si and C counterbalanced the effects of single-elemen