ﻻ يوجد ملخص باللغة العربية
We study the critical depinning current J_c, as a function of the applied magnetic flux Phi, for quasiperiodic (QP) pinning arrays, including one-dimensional (1D) chains and two-dimensional (2D) arrays of pinning centers placed on the nodes of a five-fold Penrose lattice. In 1D QP chains of pinning sites, the peaks in J_c(Phi) are shown to be determined by a sequence of harmonics of long and short periods of the chain. This sequence includes as a subset the sequence of successive Fibonacci numbers. We also analyze the evolution of J_c(Phi) while a continuous transition occurs from a periodic lattice of pinning centers to a QP one; the continuous transition is achieved by varying the ratio gamma = a_S/a_L of lengths of the short a_S and the long a_L segments, starting from gamma = 1 for a periodic sequence. We find that the peaks related to the Fibonacci sequence are most pronounced when gamma is equal to the golden mean. The critical current J_c(Phi) in QP lattice has a remarkable self-similarity. This effect is demonstrated both in real space and in reciprocal k-space. In 2D QP pinning arrays (e.g., Penrose lattices), the pinning of vortices is related to matching conditions between the vortex lattice and the QP lattice of pinning centers. Although more subtle to analyze than in 1D pinning chains, the structure in J_c(Phi) is determined by the presence of two different kinds of elements forming the 2D QP lattice. Indeed, we predict analytically and numerically the main features of J_c(Phi) for Penrose lattices. Comparing the J_cs for QP (Penrose), periodic (triangular) and random arrays of pinning sites, we have found that the QP lattice provides an unusually broad critical current J_c(Phi), that could be useful for practical applications demanding high J_cs over a wide range of fields.
We study experimentally the critical depinning current Ic versus applied magnetic field B in Nb thin films which contain 2D arrays of circular antidots placed on the nodes of quasiperiodic (QP) fivefold Penrose lattices. Close to the transition tempe
Quasiperiodic pinning arrays, as recently demonstrated theoretically and experimentally using a five-fold Penrose tiling, can lead to a significant enhancement of the critical current Ic as compared to traditional regular pinning arrays. However, whi
We numerically investigate dynamic critical behaviors of two-dimensional (2D) Josephson-junction arrays with positional disorder in the scheme of the resistively shunted junction dynamics. Large-scale computation of the current voltage characteristic
We study magnetic flux interacting with arrays of pinning sites (APS) placed on vertices of hyperbolic tesselations (HT). We show that, due to the gradient in the density of pinning sites, HT APS are capable of trapping vortices for a broad range of
The problem of reconstructing a two-dimensional (2D) current distribution in a superconductor from a 2D magnetic field measurement is recognized as a first-kind integral equation and resolved using the method of Regularization. Regularization directl