ﻻ يوجد ملخص باللغة العربية
Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M81 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over of order a few arcminute scales the far-infrared (Herschel 250 &mu&m) emission correlates spatially very well with a particular narrow velocity (2-3 km/s) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light back scattered off dust in our galaxy. Ultra-violet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arc minute scales and that at smaller scales there can be quite large dust temperature variations.
We use Herschel Space Observatory data to place observational constraints on the peak and Rayleigh-Jeans slope of dust emission observed at 70-500 microns in the nearby spiral galaxy M81. We find that the ratios of wave bands between 160 and 500 micr
We report the detection and successful modeling of the unusual 9.7mum Si--O stretching silicate emission feature in the type 1 (i.e. face-on) LINER nucleus of M81. Using the Infrared Spectrograph (IRS) instrument on Spitzer, we determine the feature
According to the standard model of cosmology, galaxies are embedded in dark matter halos which are made of particles beyond the standard model of particle physics, thus extending the mass and the size of the visible baryonic matter by typically two o
The integrated Spectral Energy Distributions of the Large and Small Magellanic Cloud appear significantly flatter than expected from dust models based on their FIR and radio emission. The origin of this millimetre excess is still unexplained, and is
We present JCMT SCUBA-2 $450mu$m and $850mu$m observations of 14 Asymptotic Giant Branch (AGB) stars (9 O--rich, 4 C-rich and 1 S--type) and one Red Supergiant (RSG) in the Solar Neighbourhood. We combine these observations with emph{Herschel}/PACS o