ﻻ يوجد ملخص باللغة العربية
We report the detection and successful modeling of the unusual 9.7mum Si--O stretching silicate emission feature in the type 1 (i.e. face-on) LINER nucleus of M81. Using the Infrared Spectrograph (IRS) instrument on Spitzer, we determine the feature in the central 230 pc of M81 to be in strong emission, with a peak at ~10.5mum. This feature is strikingly different in character from the absorption feature of the galactic interstellar medium, and from the silicate absorption or weak emission features typical of galaxies with active star formation. We successfully model the high signal-to-noise ratio IRS spectra with porous silicate dust using laboratory-acquired mineral spectra. We find that the most probable fit uses micron-sized, porous grains of amorphous silicate and graphite. In addition to silicate dust, there is weak PAH emission present (particularly at 11.3mum, arising from the C--H out-of-plane bending vibration of relatively large PAHs of ~500--1000 C atoms) whose character reflects the low-excitation AGN environment, with some evidence that small PAHs of ~100--200 C atoms (responsible for the 7.7mum C--C stretching band) in the immediate vicinity of the nucleus have been preferentially destroyed. (abstract continues)
We measure the 10 and $18mu$m silicate features in a sample of 67 local ($z<0.1$) type 1 active galactic nuclei (AGN) with available {it Spitzer} spectra dominated by non-stellar processes. We find that the $10mu$m silicate feature peaks at $10.3^{+0
We report the detection of interstellar silicate dust in the z_abs=0.685 absorber along the sightline toward the gravitationally lensed blazar TXS 0218+357. Using Spitzer Space Telescope Infrared Spectrograph data we detect the 10 micron silicate abs
We present the first 100 pc scale view of the dense molecular gas in the central ~ 1.3 kpc region of the type-1 Seyfert NGC 1097 traced by HCN (J=4-3) and HCO+ (J=4-3) lines afforded with ALMA band 7. This galaxy shows significant HCN enhancement wit
Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M8
Anomalous microwave emission (AME) has been observed by numerous experiments in the frequency range ~10-60 GHz. Using Planck maps and multi-frequency ancillary data, we have constructed spectra for two known AME regions: the Perseus and Rho Ophiuchi