ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant vibrations, peak broadening and noise in single molecule contacts: beyond the resonant tunnelling picture

365   0   0.0 ( 0 )
 نشر من قبل Heiko B. Weber
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carry out experiments on single-molecule junctions at low temperatures, using the mechanically controlled break junction technique. Analyzing the results received with more than ten different molecules the nature of the first peak in the differential conductance spectra is elucidated. We observe an electronic transition with a vibronic fine structure, which is most frequently smeared out and forms a broad peak. In the usual parameter range we find strong indications that additionally fluctuations become active even at low temperatures. We conclude that the electrical field feeds instabilities, which are triggered by the onset of current. This is underscored by noise measurements that show strong anomalies at the onset of charge transport.

قيم البحث

اقرأ أيضاً

The chemical stability of graphene and other free-standing two-dimensional crystals means that they can be stacked in different combinations to produce a new class of functional materials, designed for specific device applications. Here we report res onant tunnelling of Dirac fermions through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. The resonant peak in the device characteristics occurs when the electronic spectra of the two electrodes are aligned. The resulting negative differential conductance persists up to room temperature and is gate voltage-tuneable due to graphenes unique Dirac-like spectrum. Whereas conventional resonant tunnelling devices comprising a quantum well sandwiched between two tunnel barriers are tens of nanometres thick, the tunnelling carriers in our devices cross only a few atomic layers, offering the prospect of ultra-fast transit times. This feature, combined with the multi-valued form of the device characteristics, has potential for applications in high-frequency and logic devices.
We observe a series of sharp resonant features in the tunnelling differential conductance of InAs quantum dots. We found that dissipative quantum tunnelling has a strong influence on the operation of nano-devices. Because of such tunnelling the curre nt-voltage characteristics of tunnel contact created between atomic force microscope tip and a surface of InAs/GaAs quantum dots display many interesting peaks. We found that the number, position, and heights of these peaks are associated with the phonon modes involved. To describe the found effect we use a quasi-classical approximation. There the tunnelling current is related to a creation of a dilute instanton-anti-instanton gas. Our experimental data are well described with exactly solvable model where one charged particle is weakly interacting with two promoting phonon modes associated with external medium. We conclude that the characteristics of the tunnel nanoelectronic devices can thus be controlled by a proper choice of phonons existing in materials, which are involved.
118 - A. Mishchenko , J. S. Tu , Y. Cao 2014
Recent developments in the technology of van der Waals heterostructures made from two-dimensional atomic crystals have already led to the observation of new physical phenomena, such as the metal-insulator transition and Coulomb drag, and to the reali sation of functional devices, such as tunnel diodes, tunnel transistors and photovoltaic sensors. An unprecedented degree of control of the electronic properties is available not only by means of the selection of materials in the stack but also through the additional fine-tuning achievable by adjusting the built-in strain and relative orientation of the component layers. Here we demonstrate how careful alignment of the crystallographic orientation of two graphene electrodes, separated by a layer of hexagonal boron nitride (hBN) in a transistor device, can achieve resonant tunnelling with conservation of electron energy, momentum and, potentially, chirality. We show how the resonance peak and negative differential conductance in the device characteristics induces a tuneable radio-frequency oscillatory current which has potential for future high frequency technology.
A new class of multilayered functional materials has recently emerged in which the component atomic layers are held together by weak van der Waals forces that preserve the structural integrity and physical properties of each layer. An exemplar of suc h a structure is a transistor device in which relativistic Dirac Fermions can resonantly tunnel through a boron nitride barrier, a few atomic layers thick, sandwiched between two graphene electrodes. An applied magnetic field quantises graphenes gapless conduction and valence band states into discrete Landau levels, allowing us to resolve individual inter-Landau level transitions and thereby demonstrate that the energy, momentum and chiral properties of the electrons are conserved in the tunnelling process. We also demonstrate that the change in the semiclassical cyclotron trajectories, following a tunnelling event, is a form of Klein tunnelling for inter-layer transitions.
70 - Anqi Mu , Dvira Segal 2019
We study the behavior of shot noise in resonant tunneling junctions far from equilibrium. Quantum-coherent elastic charge transport can be characterized by a transmission function, that is the probability for an incoming electron at a given energy to tunnel through a potential barrier. In systems such as quantum point contacts, electronic shot noise is oftentimes calculated based on a constant (energy independent) transmission probability, a good approximation at low temperatures and under a small bias voltage. Here, we generalize these investigations to far from equilibrium settings by evaluating the contributions of electronic resonances to the electronic current noise. Our study extends canonical expressions for the voltage-activated shot noise and the recently discovered delta-T noise to the far from equilibrium regime, when a high bias voltage or a temperature difference is applied. In particular, when the Fermi energy is located on the shoulder of a broad resonance, we arrive at a formula for the shot noise revealing anomalous-nonlinear behavior at high bias voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا