ﻻ يوجد ملخص باللغة العربية
Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength between particles are well known and easily tunable. Unfortunately, this benefit of using optical lattices to study Hubbard models come with one clear disadvantage: the energy scales in atomic systems are typically nanoKelvin compared with Kelvin in solids, with a correspondingly miniscule temperature scale required to observe exotic phases such as d-wave superconductivity. The ultra-low temperatures necessary to reach the regime in which optical lattice simulation can have an impact-the domain in which our theoretical understanding fails-have been a barrier to progress in this field. To move forward, a concerted effort to develop new techniques for cooling and, by extension, techniques to measure even lower temperatures. This article will be devoted to discussing the concepts of cooling and thermometry, fundamental sources of heat in optical lattice experiments, and a review of proposed and implemented thermometry and cooling techniques.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavi
Matter waves can be coherently and adiabatically loaded and controlled in strongly driven optical lattices. This coherent control is used in order to modify the modulus and the sign of the tunneling matrix element in the tunneling Hamiltonian. Our fi
We study the out-of-equilibrium dynamics of bosonic atoms in a 1D optical lattice, after the ground-state is excited by a single spontaneous emission event, i.e. after an absorption and re-emission of a lattice photon. This is an important fundamenta
Originally, the Hubbard model has been derived for describing the behaviour of strongly-correlated electrons in solids. However, since over a decade now, variations of it are also routinely being implemented with ultracold atoms in optical lattices.
A major challenge in realizing antiferromagnetic (AF) and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temp