ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum control in strongly driven optical lattices

130   0   0.0 ( 0 )
 نشر من قبل Donatella Ciampini
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Matter waves can be coherently and adiabatically loaded and controlled in strongly driven optical lattices. This coherent control is used in order to modify the modulus and the sign of the tunneling matrix element in the tunneling Hamiltonian. Our findings pave the way for studies of driven quantum systems and new methods for engineering Hamiltonians that are impossible to realize with static techniques.



قيم البحث

اقرأ أيضاً

112 - Andre Eckardt 2016
Time periodic forcing in the form of coherent radiation is a standard tool for the coherent manipulation of small quantum systems like single atoms. In the last years, periodic driving has more and more also been considered as a means for the coheren t control of many-body systems. In particular, experiments with ultracold quantum gases in optical lattices subjected to periodic driving in the lower kilohertz regime have attracted a lot of attention. Milestones include the observation of dynamic localization, the dynamic control of the quantum phase transition between a bosonic superfluid and a Mott insulator, as well as the dynamic creation of strong artificial magnetic fields and topological band structures. This article reviews these recent experiments and their theoretical description. Moreover, fundamental properties of periodically driven many-body systems are discussed within the framework of Floquet theory, including heating, relaxation dynamics, anomalous topological edge states, and the response to slow parameter variations.
Quantum spin liquids (QSLs) define an exotic class of quantum ground states where spins are disordered down to zero temperature. We propose routes to QSLs in kagome optical lattices using applied flux. An optical flux lattice can be applied to induce a uniform flux and chiral three-spin interactions that drive the formation of a gapped chiral spin liquid. A different approach based on recent experiments using laser-assisted tunneling and lattice tilt implements a staggered flux pattern which can drive a gapless spin liquid with symmetry protected nodal lines. Our proposals, therefore, establish kagome optical lattices with effective flux as a powerful platform for exploration of QSLs.
135 - Boyang Liu , Jiangping Hu 2013
We study quantum fluctuation driven first-order phase transitions of a two-species bosonic system in a three-dimensional optical lattice. Using effective potential method we find that the superfluid-Mott insulator phase transition of one type of boso ns can be changed from second-order to first-order by the quantum fluctuations of the other type of bosons. The study of the scaling behaviors near the quantum critical point shows that the first-order phase transition has a different universality from the second-order one. We also discuss the observation of this exotic phenomenon in the realistic cold-atom experiments.
289 - D. McKay , B. DeMarco 2010
Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength betw een particles are well known and easily tunable. Unfortunately, this benefit of using optical lattices to study Hubbard models come with one clear disadvantage: the energy scales in atomic systems are typically nanoKelvin compared with Kelvin in solids, with a correspondingly miniscule temperature scale required to observe exotic phases such as d-wave superconductivity. The ultra-low temperatures necessary to reach the regime in which optical lattice simulation can have an impact-the domain in which our theoretical understanding fails-have been a barrier to progress in this field. To move forward, a concerted effort to develop new techniques for cooling and, by extension, techniques to measure even lower temperatures. This article will be devoted to discussing the concepts of cooling and thermometry, fundamental sources of heat in optical lattice experiments, and a review of proposed and implemented thermometry and cooling techniques.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا