ﻻ يوجد ملخص باللغة العربية
A major challenge in realizing antiferromagnetic (AF) and superfluid phases in optical lattices is the ability to cool fermions. We determine the equation of state for the 3D repulsive Fermi-Hubbard model as a function of the chemical potential, temperature and repulsion using unbiased determinantal quantum Monte Carlo methods, and we then use the local density approximation to model a harmonic trap. We show that increasing repulsion leads to cooling, but only in a trap, due to the redistribution of entropy from the center to the metallic wings. Thus, even when the average entropy per particle is larger than that required for antiferromagnetism in the homogeneous system, the trap enables the formation of an AF Mott phase.
Scalable, coherent many-body systems can enable the realization of previously unexplored quantum phases and have the potential to exponentially speed up information processing. Thermal fluctuations are negligible and quantum effects govern the behavi
Understanding the magnetic response of the normal state of the cuprates is considered a key piece in solving the puzzle of their high-temperature superconductivity. The essential physics of these materials is believed to be captured by the Fermi-Hubb
Optical lattices have emerged as ideal simulators for Hubbard models of strongly correlated materials, such as the high-temperature superconducting cuprates. In optical lattice experiments, microscopic parameters such as the interaction strength betw
The Fermi-Hubbard model describes ultracold fermions in an optical lattice and exhibits antiferromagnetic long-ranged order below the N{e}el temperature. However, reaching this temperature in the lab has remained an elusive goal. In other atomic syst
Anisotropic dipole-dipole interactions between ultracold dipolar fermions break the symmetry of the Fermi surface and thereby deform it. Here we demonstrate that such a Fermi surface deformation induces a topological phase transition -- so-called Lif