ترغب بنشر مسار تعليمي؟ اضغط هنا

Large yield production of high mobility freely suspended graphene electronic devices on a PMGI based organic polymer

124   0   0.0 ( 0 )
 نشر من قبل Nikolaos Tombros
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف N. Tombros




اسأل ChatGPT حول البحث

The recent observation of fractional quantum Hall effect in high mobility suspended graphene devices introduced a new direction in graphene physics, the field of electron-electron interaction dynamics. However, the technique used currently for the fabrication of such high mobility devices has several drawbacks. The most important is that the contact materials available for electronic devices are limited to only a few metals (Au, Pd, Pt, Cr and Nb) since only those are not attacked by the reactive acid (BHF) etching fabrication step. Here we show a new technique which leads to mechanically stable suspended high mobility graphene devices which is compatible with almost any type of contact material. The graphene devices prepared on a polydimethylglutarimide based organic resist show mobilities as high as 600.000 cm^2/Vs at an electron carrier density n = 5.0 10^9 cm^-2 at 77K. This technique paves the way towards complex suspended graphene based spintronic, superconducting and other types of devices.



قيم البحث

اقرأ أيضاً

We measure spin transport in high mobility suspended graphene (mu ~ 10^5 cm^2/Vs), obtaining a (spin) diffusion coefficient of 0.1 m^2/s and giving a lower bound on the spin relaxation time (tau_s ~ 150 ps) and spin relaxation length (lambda_s=4.7 mu m) for intrinsic graphene. We develop a theoretical model considering the different graphene regions of our devices that explains our experimental data.
114 - C. Schuster , M. Kraus , A. Opitz 2010
Ambipolar charge carrier transport in Copper phthalocyanine (CuPc) is studied experimentally in field-effect transistors and metal-insulator-semiconductor diodes at various temperatures. The electronic structure and the transport properties of CuPc a ttached to leads are calculated using density functional theory and scattering theory at the non-equilibrium Greens function level. We discuss, in particular, the electronic structure of CuPc molecules attached to gold chains in different geometries to mimic the different experimental setups. The combined experimental and theoretical analysis explains the dependence of the mobilityand the transmission coefficient on the charge carrier type (electrons or holes) and on the contact geometry. We demonstrate the correspondence between our experimental results on thick films and our theoretical studies of single molecule contacts. Preliminary results for fluorinated CuPc are discussed.
We report pronounced magnetoconductance oscillations observed on suspended bilayer and trilayer graphene devices with mobilities up to 270,000 cm2/Vs. For bilayer devices, we observe conductance minima at all integer filling factors nu between 0 and -8, as well as a small plateau at { u}=1/3. For trilayer devices, we observe features at nu=-1, -2, -3 and -4, and at { u}~0.5 that persist to 4.5K at B=8T. All of these features persist for all accessible values of Vg and B, and could suggest the onset of symmetry breaking of the first few Landau (LL) levels and fractional quantum Hall states.
We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon(GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V-1 s-1 and an intrinsic band gap. The experimentally derived ba ndgap is in quantitative agreement with the results of our electronic-structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges.
Organometallic hexahapto chromium metal complexation of single layer graphene, which involves constructive rehybridization of the graphene pi-system with the vacant chromium d orbital, leads to field effect devices which retain a high degree of the m obility with enhanced on-off ratio. This hexahapto mode of bonding between metal and graphene is quite distinct from the modification in electronic structure induced by conventional covalent sigma-bond formation with creation of sp3 carbon centers in graphene lattice and this chemistry is reversible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا