ﻻ يوجد ملخص باللغة العربية
We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon(GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm2 V-1 s-1 and an intrinsic band gap. The experimentally derived bandgap is in quantitative agreement with the results of our electronic-structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the bandgap in non-armchair GNRs is partially due to the magnetic zigzag edges.
We report pronounced magnetoconductance oscillations observed on suspended bilayer and trilayer graphene devices with mobilities up to 270,000 cm2/Vs. For bilayer devices, we observe conductance minima at all integer filling factors nu between 0 and
Van der Waals heterostructures formed by assembling different two-dimensional atomic crystals into stacks can lead to many new phenomena and device functionalities. In particular, graphene/boron-nitride heterostructures have emerged as a very promisi
We report the experimental observation of conductance quantization in graphene nanoribbons, where 1D transport subbands are formed due to the lateral quantum confinement. We show that this quantization in graphene nanoribbons can be observed at tempe
A theoretical study of the transport properties of zigzag and armchair graphene nanoribbons with a magnetic barrier on top is presented. The magnetic barrier modifies the energy spectrum of the nanoribbons locally, which results in an energy shift of
The thermoelectric response of high mobility single layer epitaxial graphene on silicon carbide substrates as a function of temperature and magnetic field have been investigated. For the temperature dependence of the thermopower, a strong deviation f