ترغب بنشر مسار تعليمي؟ اضغط هنا

Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity

153   0   0.0 ( 0 )
 نشر من قبل Ben-Zhang Yang
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, a pricing formula for volatility swaps is delivered when the underlying asset follows the stochastic volatility model with jumps and stochastic intensity. By using Feynman-Kac theorem, a partial integral differential equation is obtained to derive the joint moment generating function of the previous model. Moreover, discrete and continuous sampled volatility swap pricing formulas are given by employing transform techniques and the relationship between two pricing formulas is discussed. Finally, some numerical simulations are reported to support the results presented in this paper.

قيم البحث

اقرأ أيضاً

This paper focuses on the pricing of the variance swap in an incomplete market where the stochastic interest rate and the price of the stock are respectively driven by Cox-Ingersoll-Ross model and Heston model with simultaneous L{e}vy jumps. By using the equilibrium framework, we obtain the pricing kernel and the equivalent martingale measure. Moreover, under the forward measure instead of the risk neural measure, we give the closed-form solution for the fair delivery price of the discretely sampled variance swap by employing the joint moment generating function of the underlying processes. Finally, we provide some numerical examples to depict that the values of variance swaps not only depend on the stochastic interest rates but also increase in the presence of jump risks.
In this chapter, we consider volatility swap, variance swap and VIX future pricing under different stochastic volatility models and jump diffusion models which are commonly used in financial market. We use convexity correction approximation technique and Laplace transform method to evaluate volatility strikes and estimate VIX future prices. In empirical study, we use Markov chain Monte Carlo algorithm for model calibration based on S&P 500 historical data, evaluate the effect of adding jumps into asset price processes on volatility derivatives pricing, and compare the performance of different pricing approaches.
230 - Ben Boukai 2021
We consider Hestons (1993) stochastic volatility model for valuation of European options to which (semi) closed form solutions are available and are given in terms of characteristic functions. We prove that the class of scale-parameter distributions with mean being the forward spot price satisfies Hestons solution. Thus, we show that any member of this class could be used for the direct risk-neutral valuation of the option price under Hestons SV model. In fact, we also show that any RND with mean being the forward spot price that satisfies Hestons option valuation solution, must be a member of a scale-family of distributions in that mean. As particular examples, we show that one-paramet
Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.
We consider the problem of option pricing under stochastic volatility models, focusing on the linear approximation of the two processes known as exponential Ornstein-Uhlenbeck and Stein-Stein. Indeed, we show they admit the same limit dynamics in the regime of low fluctuations of the volatility process, under which we derive the exact expression of the characteristic function associated to the risk neutral probability density. This expression allows us to compute option prices exploiting a formula derived by Lewis and Lipton. We analyze in detail the case of Plain Vanilla calls, being liquid instruments for which reliable implied volatility surfaces are available. We also compute the analytical expressions of the first four cumulants, that are crucial to implement a simple two steps calibration procedure. It has been tested against a data set of options traded on the Milan Stock Exchange. The data analysis that we present reveals a good fit with the market implied surfaces and corroborates the accuracy of the linear approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا