ترغب بنشر مسار تعليمي؟ اضغط هنا

The MiMeS Project: Overview and Current Status

122   0   0.0 ( 0 )
 نشر من قبل Gregg Wade
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fields in these objects. At the time of writing, MiMeS Large Programs have acquired over 950 high-resolution polarised spectra of about 150 individual stars with spectral types from B5-O4, discovering new magnetic fields in a dozen hot, massive stars. The quality of this spectral and magnetic materiel is very high, and the Collaboration is keen to connect with colleagues capable of exploiting the data in new or unforeseen ways. In this paper we review the structure of the MiMeS observing programs and report the status of observations, data modeling and development of related theory.

قيم البحث

اقرأ أيضاً

The MiMeS project is a large-scale, high resolution, sensitive spectropolarimetric investigation of the magnetic properties of O and early B type stars. Initiated in 2008 and completed in 2013, the project was supported by 3 Large Program allocations , as well as various programs initiated by independent PIs and archival resources. Ultimately, over 4800 circularly polarized spectra of 560 O and B stars were collected with the instruments ESPaDOnS at the Canada-France-Hawaii Telescope, Narval at the Telescope Bernard Lyot, and HARPSpol at the European Southern Observatory La Silla 3.6m telescope, making MiMeS by far the largest systematic investigation of massive star magnetism ever undertaken. In this paper, the first in a series reporting the general results of the survey, we introduce the scientific motivation and goals, describe the sample of targets, review the instrumentation and observational techniques used, explain the exposure time calculation designed to provide sensitivity to surface dipole fields above approximately 100 G, discuss the polarimetric performance, stability and uncertainty of the instrumentation, and summarize the previous and forthcoming publications.
We present the current status of the SuperWASP project, a Wide Angle Search for Planets. SuperWASP consists of up to 8 individual cameras using ultra-wide field lenses backed by high-quality passively cooled CCDs. Each camera covers 7.8 x 7.8 sq degr ees of sky, for nearly 500 sq degrees of sky coverage. SuperWASP I, located in LaPalma, is currently operational with 5 cameras and is conducting a photometric survey of a large numbers of stars in the magnitude range ~7 to 15. The collaboration has developed a custom-built reduction pipeline and aims to achieve better than 1 percent photometric precision. The pipeline will also produce well sampled light curves for all the stars in each field which will be used to detect: planetary transits, optical transients, and track Near-Earth Objects. Status of current observations, and expected rates of extrasolar planetary detections will be presented. The consortium members, institutions, and further details can be found on the web site at: http://www.superwasp.org.
157 - R. B. Barreiro 2009
In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmologica l parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.
MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental res earch fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.
The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) project is an astrophysical online database for cross sections relevant for nucleosynthesis in the $s$ process and the $gamma$ process. The $s$-process database (www.kadonis.o rg) was started in 2005 and is presently facing its 4th update (KADoNiS v1.0). The $gamma$-process database (KADoNiS-p, www.kadonis.org/pprocess) was recently revised and re-launched in March 2013. Both databases are compilations for experimental cross sections with relevance to heavy ion nucleosynthesis. For the $s$ process recommended Maxwellian averaged cross sections for $kT$= 5-100~keV are given for more than 360 isotopes between $^{1}$H and $^{210}$Bi. For the $gamma$-process database all available experimental data from $(p,gamma), (p,n), (p,alpha), (alpha,gamma), (alpha,n)$, and $(alpha,p)$ reactions between $^{70}$Ge and $^{209}$Bi in or close to the respective Gamow window were collected and can be compared to theoretical predictions. The aim of both databases is a quick and user-friendly access to the available data in the astrophysically relevant energy regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا