ترغب بنشر مسار تعليمي؟ اضغط هنا

An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

390   0   0.0 ( 0 )
 نشر من قبل Alexis Matter
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.



قيم البحث

اقرأ أيضاً

91 - Sascha P. Quanz 2018
One of the long-term goals of exoplanet science is the (atmospheric) characterization of a large sample (>100) of terrestrial planets to assess their potential habitability and overall diversity. Hence, it is crucial to quantitatively evaluate and co mpare the scientific return of various mission concepts. Here we discuss the exoplanet yield of a space-based mid-infrared (MIR) nulling interferometer. We use Monte-Carlo simulations, based on the observed planet population statistics from the Kepler mission, to quantify the number and properties of detectable exoplanets (incl. potentially habitable planets) and we compare the results to those for a large aperture optical/NIR space telescope. We investigate how changes in the underlying technical assumptions (sensitivity and spatial resolution) impact the results and discuss scientific aspects that influence the choice for the wavelength coverage and spectral resolution. Finally, we discuss the advantages of detecting exoplanets at MIR wavelengths, summarize the current status of some key technologies, and describe what is needed in terms of further technology development to pave the road for a space-based MIR nulling interferometer for exoplanet science.
We present an overview of the scientific potential of MATISSE, the Multi Aperture mid-Infrared SpectroScopic Experiment for the Very Large Telescope Interferometer. For this purpose we outline selected case studies from various areas, such as star an d planet formation, active galactic nuclei, evolved stars, extrasolar planets, and solar system minor bodies and discuss strategies for the planning and analysis of future MATISSE observations. Moreover, the importance of MATISSE observations in the context of complementary high-angular resolution observations at near-infrared and submillimeter/millimeter wavelengths is highlighted.
257 - R. B. Barreiro 2009
In this paper we briefly review the current status of the Cosmic Microwave Background (CMB) observations, summarising the latest results obtained from CMB experiments, both in intensity and polarization, and the constraints imposed on the cosmologica l parameters. We also present a summary of current and future CMB experiments, with a special focus on the quest for the CMB B-mode polarization.
The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fi elds in these objects. At the time of writing, MiMeS Large Programs have acquired over 950 high-resolution polarised spectra of about 150 individual stars with spectral types from B5-O4, discovering new magnetic fields in a dozen hot, massive stars. The quality of this spectral and magnetic materiel is very high, and the Collaboration is keen to connect with colleagues capable of exploiting the data in new or unforeseen ways. In this paper we review the structure of the MiMeS observing programs and report the status of observations, data modeling and development of related theory.
The first simultaneous detection of a short gamma-ray burst (SGRB) with a gravitational-wave (GW) signal ushered in a new era of multi-messenger astronomy. In order to increase the number of SGRB-GW simultaneous detections, we need full sky coverage in the gamma-ray regime. BurstCube, a CubeSat for Gravitational Wave Counterparts, aims to expand sky coverage in order to detect and localize gamma-ray bursts (GRBs). BurstCube will be comprised of 4 Cesium Iodide scintillators coupled to arrays of Silicon photo-multipliers on a 6U CubeSat bus (a single U corresponds to cubic unit $sim$10 cm $times$ 10 cm $times$ 10 cm) and will be sensitive to gamma-rays between 50 keV and 1 MeV, the ideal energy range for GRB prompt emission. BurstCube will assist current observatories, such as $Swift$ and $Fermi$, in the detection of GRBs as well as provide astronomical context to gravitational wave events detected by Advanced LIGO, Advanced Virgo, and KAGRA. BurstCube is currently in its development and testing phase to prepare for launch readiness in the fall of 2021. We present the mission concept, preliminary performance, and status.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا