ترغب بنشر مسار تعليمي؟ اضغط هنا

Current Status of the SuperWASP Project

95   0   0.0 ( 0 )
 نشر من قبل Damian Christian
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the current status of the SuperWASP project, a Wide Angle Search for Planets. SuperWASP consists of up to 8 individual cameras using ultra-wide field lenses backed by high-quality passively cooled CCDs. Each camera covers 7.8 x 7.8 sq degrees of sky, for nearly 500 sq degrees of sky coverage. SuperWASP I, located in LaPalma, is currently operational with 5 cameras and is conducting a photometric survey of a large numbers of stars in the magnitude range ~7 to 15. The collaboration has developed a custom-built reduction pipeline and aims to achieve better than 1 percent photometric precision. The pipeline will also produce well sampled light curves for all the stars in each field which will be used to detect: planetary transits, optical transients, and track Near-Earth Objects. Status of current observations, and expected rates of extrasolar planetary detections will be presented. The consortium members, institutions, and further details can be found on the web site at: http://www.superwasp.org.

قيم البحث

اقرأ أيضاً

The Magnetism in Massive Stars (MiMeS) Project is a consensus collaboration among many of the foremost international researchers of the physics of hot, massive stars, with the basic aim of understanding the origin, evolution and impact of magnetic fi elds in these objects. At the time of writing, MiMeS Large Programs have acquired over 950 high-resolution polarised spectra of about 150 individual stars with spectral types from B5-O4, discovering new magnetic fields in a dozen hot, massive stars. The quality of this spectral and magnetic materiel is very high, and the Collaboration is keen to connect with colleagues capable of exploiting the data in new or unforeseen ways. In this paper we review the structure of the MiMeS observing programs and report the status of observations, data modeling and development of related theory.
The SuperWASP Cameras are wide-field imaging systems sited at the Observatorio del Roque de los Muchachos on the island of La Palma in the Canary Islands, and the Sutherland Station of the South African Astronomical Observatory. Each instrument has a field of view of some ~482 square degrees with an angular scale of 13.7 arcsec per pixel, and is capable of delivering photometry with accuracy better than 1% for objects having V ~ 7.0 - 11.5. Lower quality data for objects brighter than V ~15.0 are stored in the project archive. The systems, while designed to monitor fields with high cadence, are capable of surveying the entire visible sky every 40 minutes. Depending on the observational strategy, the data rate can be up to 100GB per night. We have produced a robust, largely automatic reduction pipeline and advanced archive which are used to serve the data products to the consortium members. The main science aim of these systems is to search for bright transiting exo-planets systems suitable for spectroscopic followup observations. The first 6 month season of SuperWASP-North observations produced lightcurves of ~6.7 million objects with 12.9 billion data points.
We give an overview of the QPACE project, which is pursuing the development of a massively parallel, scalable supercomputer for LQCD. The machine is a three-dimensional torus of identical processing nodes, based on the PowerXCell 8i processor. The no des are connected by an FPGA-based, application-optimized network processor attached to the PowerXCell 8i processor. We present a performance analysis of lattice QCD codes on QPACE and corresponding hardware benchmarks.
226 - C. Baltay 2009
Other the past few years we have developed a monolithic CMOS pixel detector design for the ILC in collaboration with the SARNOFF Corporation. The unique feature of this design is the recorded time tag for each hit, allowing assignment of the hit to a particular bunch crossing (thus the name Chronopixel). The prototype design was completed in 2007. The first set of prototype devices was fabricated in 2008. We have developed a detailed testing plan and have designed the test electronics in collaboration with SLAC. Testing is expected to start early in 2009.
95 - N. Harnew , S. Bhasin , T. Blake 2020
The TORCH time-of-flight detector will provide particle identification between 2-10 GeV/c momentum over a flight distance of 10 m, and is designed for large-area coverage, up to 30 m^2. A 15 ps time-of-flight resolution per incident particle is antic ipated by measuring the arrival times from Cherenkov photons produced in a synthetic fused silica radiator plate of 10 mm thickness. Customised Micro-Channel Plate Photomultiplier Tube (MCP-PMT) photon detectors of 53 x 53 mm^2 active area with a 64 x 64 granularity have been developed with industrial partners. Test-beam studies using both a small-scale TORCH demonstrator and a half-length TORCH module are presented. The desired timing resolution of 70 ps per single photon is close to being achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا