ترغب بنشر مسار تعليمي؟ اضغط هنا

Test beam studies for a highly granular GRPC Semi-Digital HCAL

144   0   0.0 ( 0 )
 نشر من قبل Vincent Boudry
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vincent Boudry




اسأل ChatGPT حول البحث

The Particle Flow Analysis approach retained for the future ILC detectors requires high granularity and compact particle energy deposition. A Glass Resistive Plate Chamber based Semi-Digital calorimeter can offer both at a low price for the hadronic section. This paper presents some recent developments and results near test beam in the use of Glass Resistive Plate Chamber with embedded front-end electronics to build a prototype based on this principle. All the critical parameters such as the spatial and angular uniformity of the response as well as the noise level have been measured on small chambers and found to be appropriate. Small semi-conductive chambers allowing for high rates and a large chamber have also been tested.

قيم البحث

اقرأ أيضاً

100 - K. Kawagoe 2019
The technological prototype of the CALICE highly granular silicon-tungsten electromagnetic calorimeter (SiW-ECAL) was tested in a beam at DESY in 2017. The setup comprised seven layers of silicon sensors. Each layer comprised four sensors, with each sensor containing an array of 256 $5.5times5.5$ mm$^2$ silicon PIN diodes. The four sensors covered a total area of $18times18$ cm$^2$, and comprised a total of 1024 channels. The readout was split into a trigger line and a charge signal line. Key performance results for signal over noise for the two output lines are presented, together with a study of the uniformity of the detector response. Measurements of the response to electrons for the tungsten loaded version of the detector are also presented.
The Analogue Hadron Calorimeter (AHCAL) developed by the CALICE collaboration is a scalable engineering prototype for a Linear Collider detector. It is a sampling calorimeter of steel absorber plates and plastic scintillator tiles read out by silicon photomultipliers (SiPMs) as active material (SiPM-on-tile). The front-end chips are integrated into the active layers of the calorimeter and are designed for minimizing power consumption by rapidly cycling the power according to the beam structure of a linear accelerator. 38 layers of the sampling structure are equipped with cassettes containing 576 single channels each, arranged on readout boards and grouped according to the 36 channel readout chips. The prototype has been assembled using techniques suitable for mass production, such as injection-moulding and semi-automatic wrapping of scintillator tiles, assembly of scintillators on electronics using pick-and-place machines and mass testing of detector elements. The calorimeter was commissioned at DESY and was taking data at the CERN SPS at the time of the conference. The contribution discusses the construction, commissioning and first test beam results of the CALICE AHCAL engineering prototype.
Operating conditions and challenging demands of present and future accelerator experiments result in new requirements on detector systems. There are many ongoing activities aimed to develop new technologies and to improve the properties of detectors based on existing technologies. Our work is dedicated to development of Transition Radiation Detectors (TRD) suitable for different applications. In this paper results obtained in beam tests at SPS accelerator at CERN with the TRD prototype based on straw technology are presented. TRD performance was studied as a function of thickness of the transition radiation radiator and working gas mixture pressure.
The highly granular calorimeter prototypes of the CALICE collaboration have provided large data samples with precise three-dimensional information on hadronic showers with steel and tungsten absorbers and silicon, scintillator and gas detector readou t. From these data sets, detailed measurements of the spatial structure, including longitudinal and lateral shower profiles and of the shower substructure and time structure are extracted. Recent analyses have extended these studies to different particle species in calorimeters with scintillator readout and steel and tungsten absorbers, to energies below 10 GeV in a silicon tungsten calorimeter and have provided first studies of the shower substructure with gaseous readout and unprecedented granularity of $1times1$~cm$^{2}$ over a full cubic meter. These results are confronted with Geant4 simulations with different hadronic physics models. They present new challenges to the simulation codes and provide the possibility to validate and improve the simulation of hadronic interactions in high-energy physics detectors.
118 - Satoru Uozumi 2010
In Japan, China and Russia, there are several test beam lines available or will become available in near future. Those are open for users who need electron, muon and charged pion beams with energies of 1-50 GeV for any tests of small-size detectors. In this manuscript I present a current status of those test beam facilities in the Asian region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا