ترغب بنشر مسار تعليمي؟ اضغط هنا

Detailed studies of hadronic showers and comparison to GEANT4 simulations with data from highly granular calorimeters

52   0   0.0 ( 0 )
 نشر من قبل Naomi van der Kolk
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The highly granular calorimeter prototypes of the CALICE collaboration have provided large data samples with precise three-dimensional information on hadronic showers with steel and tungsten absorbers and silicon, scintillator and gas detector readout. From these data sets, detailed measurements of the spatial structure, including longitudinal and lateral shower profiles and of the shower substructure and time structure are extracted. Recent analyses have extended these studies to different particle species in calorimeters with scintillator readout and steel and tungsten absorbers, to energies below 10 GeV in a silicon tungsten calorimeter and have provided first studies of the shower substructure with gaseous readout and unprecedented granularity of $1times1$~cm$^{2}$ over a full cubic meter. These results are confronted with Geant4 simulations with different hadronic physics models. They present new challenges to the simulation codes and provide the possibility to validate and improve the simulation of hadronic interactions in high-energy physics detectors.

قيم البحث

اقرأ أيضاً

The intrinsic time structure of hadronic showers influences the timing capability and the required integration time of hadronic calorimeters in particle physics experiments, and depends on the active medium and on the absorber of the calorimeter. Wit h the CALICE T3B experiment, a setup of 15 small plastic scintillator tiles read out with Silicon Photomultipliers, the time structure of showers is measured on a statistical basis with high spatial and temporal resolution in sampling calorimeters with tungsten and steel absorbers. The results are compared to GEANT4 (version 9.4 patch 03) simulations with different hadronic physics models. These comparisons demonstrate the importance of using high precision treatment of low-energy neutrons for tungsten absorbers, while an overall good agreement between data and simulations for all considered models is observed for steel.
67 - Marco Szalay 2014
Hadronic showers are characterized by a rich particle structure in the spatial as well as in the time domain. The prompt component comes from relativistic fragments that deposit energy at the ns scale, while late components are associated predominant ly with neutrons in the cascade. To measure the impact of these late components, two experiments, based on gaseous and plastic active layers with steel and tungsten absorbers, were set up. The different choice for the material of the active layers produces distinct responses to neutrons, and consequently to late energy depositions. After discussing the technical aspects of these systems, we present a comparison of the signals, read out with fast digitizers with deep buffers, and provide detailed information of the time structure of hadronic showers over a long sampling window.
We investigate the three dimensional substructure of hadronic showers in the CALICE scintillator-steel hadronic calorimeter. The high granularity of the detector is used to find track segments of minimum ionising particles within hadronic showers, pr oviding sensitivity to the spatial structure and the details of secondary particle production in hadronic cascades. The multiplicity, length and angular distribution of identified track segments are compared to GEANT4 simulations with several different shower models. Track segments also provide the possibility for in-situ calibration of highly granular calorimeters.
We present a study which shows encouraging stability of the response linearity for a simulated high granularity calorimeter module reconstructed by a CNN model to miscalibration, bias, and noise effects. Our results also show an intuitive, quantifiab le relationship between these factors and the calibration parameters. We trained a CNN model to reconstruct energy in the calorimeter module using simulated single-pion events; we then observed the response of the model under various miscalibration, bias, and noise conditions that affected the model input. From these data, we estimated linear response models to calibrate the CNN. We also quantified the relationship between these factors and the calibration parameters by regression analysis.
104 - C.Adloff , J.Blaha , J.-J.Blaising 2013
Calorimeters with a high granularity are a fundamental requirement of the Particle Flow paradigm. This paper focuses on the prototype of a hadron calorimeter with analog readout, consisting of thirty-eight scintillator layers alternating with steel a bsorber planes. The scintillator plates are finely segmented into tiles individually read out via Silicon Photomultipliers. The presented results are based on data collected with pion beams in the energy range from 8GeV to 100GeV. The fine segmentation of the sensitive layers and the high sampling frequency allow for an excellent reconstruction of the spatial development of hadronic showers. A comparison between data and Monte Carlo simulations is presented, concerning both the longitudinal and lateral development of hadronic showers and the global response of the calorimeter. The performance of several GEANT4 physics lists with respect to these observables is evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا