ﻻ يوجد ملخص باللغة العربية
We present an efficient, linear-scaling implementation for building the (screened) Hartree-Fock exchange (HFX) matrix for periodic systems within the framework of numerical atomic orbital (NAO) basis functions. Our implementation is based on the localized resolution of the identity approximation by which two-electron Coulomb repulsion integrals can be obtained by only computing two-center quantities -- a feature that is highly beneficial to NAOs. By exploiting the locality of basis functions and efficient prescreening of the intermediate three- and two-index tensors, one can achieve a linear scaling of the computational cost for building the HFX matrix with respect to the system size. Our implementation is massively parallel, thanks to a MPI/OpenMP hybrid parallelization strategy for distributing the computational load and memory storage. All these factors add together to enable highly efficient hybrid functional calculations for large-scale periodic systems. In this work we describe the key algorithms and implementation details for the HFX build as implemented in the ABACUS code package. The performance and scalability of our implementation with respect to the system size and the number of CPU cores are demonstrated for selected benchmark systems up to 4096 atoms.
Imaginary-time time-dependent Density functional theory (it-TDDFT) has been proposed as an alternative method for obtaining the ground state within density functional theory (DFT) which avoids some of the difficulties with convergence encountered by
Real-time time-dependent density functional theory (rt-TDDFT) with hybrid exchange-correlation functional has wide-ranging applications in chemistry and material science simulations. However, it can be thousands of times more expensive than a convent
Localized basis sets in the projector augmented wave formalism allow for computationally efficient calculations within density functional theory (DFT). However, achieving high numerical accuracy requires an extensive basis set, which also poses a fun
This work presents a dynamic parallel distribution scheme for the Hartree-Fock exchange~(HFX) calculations based on the real-space NAO2GTO framework. The most time-consuming electron repulsion integrals~(ERIs) calculation is perfectly load-balanced w
Hybrid density-functional calculation is one of the most commonly adopted electronic structure theory used in computational chemistry and materials science because of its balance between accuracy and computational cost. Recently, we have developed a