ترغب بنشر مسار تعليمي؟ اضغط هنا

Contactless rheology of finite-size air-water interfaces

87   0   0.0 ( 0 )
 نشر من قبل Thomas Salez
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Vincent Bertin




اسأل ChatGPT حول البحث

We present contactless atomic-force microscopy measurements of the hydrodynamic interactions between a rigid sphere and an air bubble in water at the micro-scale. The size of the bubble is found to have a significant effect on the response due to the long-range capillary deformation of the air-water interface. To rationalize the experimental data, we develop a viscocapillary lubrication model accounting for the finite-size effect. The comparison between experiments and theory allows us to measure the air-water surface tension, without contact, paving the way towards robust contactless tensiometry of polluted air-water interfaces.

قيم البحث

اقرأ أيضاً

We unveil the generation of universal morphologies of fluid interfaces by radiation pressure whatever is the nature of the wave, acoustic or optical. Experimental observations reveal interface deformations endowed with step-like features that are sho wn to result from the interplay between the wave propagation and the shape of the interface. The results are supported by numerical simulations and a quantitative interpretation based on the waveguiding properties of the field is provided.
A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder as well as the deformability of the substrate, which we express in term of a single scaled compliance parameter. By varying this compliance parameter, we show that our experimental results are consistent with a transition from an edge-effect dominated regime for short cylinders to a gap-dominated elastohydrodynamic regime when the cylinder is very long.
The formation of smart emulsions or foams whose stability can be controlled on-demand by switching external parameters is of great interest for basic research and applications. An emerging group of smart stabilizers are microgels, which are nano- and micro-sized, three-dimensional polymer networks that are swollen by a good solvent. In the last decades, the influence of various external stimuli on the two-dimensional phase behavior of microgels at air- and oil-water interfaces has been studied. However, the impact of the top-phase itself has been barely considered. Here, we present data that directly address the influence of the top-phase on the microgel properties at interfaces. The dimensions of pNIPAM microgels are measured after deposition from two interfaces, i.e., air- and decane-water. While the total in-plane size of the microgel increases with increasing interfacial tension, the portions or fractions of the microgels situated in the aqueous phase are not affected. We correlate the area microgels occupy to the surface tensions of the interfaces, which allows to estimate an elastic modulus. In comparison to nanoindentation measurements, we observe a larger elastic modulus for the microgels. By combining compression, deposition, and visualization, we show that the two-dimensional phase behavior of the microgel monolayers is not altered, although the microgels have a larger total in-plane size at higher interfacial tension. A peer reviewed and extended version of this preprint and the electronic supplementary information can be found under S.~Bochenek, A.~Scotti, W.~Richtering, textit{Soft Matter}, 2020, DOI: 10.1039/d0sm01774d.
Understanding the interactions between viruses and surfaces or interfaces is important, as they provide the principles underpinning the cleaning and disinfection of contaminated surfaces. Yet, the physics of such interactions is currently poorly unde rstood. For instance, there are longstanding experimental observations suggesting that the presence of air-water interfaces can generically inactivate and kill viruses, yet the mechanism underlying this phenomenon remains unknown. Here we use theory and simulations to show that electrostatics provides one such mechanism, and that this is very general. Thus, we predict that the free energy of an RNA virus should increase by several thousands of $k_BT$ as the virion breaches an air-water interface. We also show that the fate of a virus approaching a generic liquid-liquid interface depends strongly on the detailed balance between interfacial and electrostatic forces, which can be tuned, for instance, by choosing different media to contact a virus-laden respiratory droplet. We propose that these results can be used to design effective strategies for surface disinfection. Intriguingly, tunability requires electrostatic and interfacial forces to scale similarly with viral size, which naturally occurs when charges are arranged in a double-shell distribution as in RNA viruses like influenza and all coronaviruses.
We introduce a model gel system in which colloidal forces, structure, and rheology are measured by balancing the requirements of rheological and microscopy techniques with those of optical tweezers. Sterically stabilized poly(methyl methacrylate) (PM MA) colloids are suspended in cyclohexane (CH) and cyclohexyl bromide (CHB) with dilute polystyrene serving as a depletion agent. A solvent comprising of 37% weight fraction CH provides sufficient refractive index contrast to enable optical trapping, while maintaining good confocal imaging quality and minimal sedimentation effects on the bulk rheology. At this condition, and at a depletant concentration c = 8.64 mg/mL (c/c* = 0.81), results from optical trapping show that 50% of bonds rupture at 3.3 pN. The linear strain-dependent elastic modulus of the corresponding gel (volume fraction = 0.20) is G = 1.8 Pa, and the mean contact number of the particles in the gel structure is 5.4. These structural and rheological parameters are similar to colloidal gels that are weakly aggregating and cluster-like. Thus, the model gel yields a concomitant characterization of the interparticle forces, microstructure, and bulk rheology in a single experimental system, thereby introducing the simultaneous comparison of these experimental measures to models and simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا