ﻻ يوجد ملخص باللغة العربية
We present contactless atomic-force microscopy measurements of the hydrodynamic interactions between a rigid sphere and an air bubble in water at the micro-scale. The size of the bubble is found to have a significant effect on the response due to the long-range capillary deformation of the air-water interface. To rationalize the experimental data, we develop a viscocapillary lubrication model accounting for the finite-size effect. The comparison between experiments and theory allows us to measure the air-water surface tension, without contact, paving the way towards robust contactless tensiometry of polluted air-water interfaces.
We unveil the generation of universal morphologies of fluid interfaces by radiation pressure whatever is the nature of the wave, acoustic or optical. Experimental observations reveal interface deformations endowed with step-like features that are sho
A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to
The formation of smart emulsions or foams whose stability can be controlled on-demand by switching external parameters is of great interest for basic research and applications. An emerging group of smart stabilizers are microgels, which are nano- and
Understanding the interactions between viruses and surfaces or interfaces is important, as they provide the principles underpinning the cleaning and disinfection of contaminated surfaces. Yet, the physics of such interactions is currently poorly unde
We introduce a model gel system in which colloidal forces, structure, and rheology are measured by balancing the requirements of rheological and microscopy techniques with those of optical tweezers. Sterically stabilized poly(methyl methacrylate) (PM