ﻻ يوجد ملخص باللغة العربية
We study a variant of the well known Maxwell model for viscoelastic fluids, namely we consider the Maxwell fluid with viscosity and relaxation time depending on the pressure. Such a model is relevant for example in modelling behaviour of some polymers and geomaterials. Although it is experimentally known that the material moduli of some viscoelastic fluids can depend on the pressure, most of the studies concerning the motion of viscoelastic fluids do not take such effects into account despite their possible practical significance in technological applications. Using a generalized Maxwell model with pressure dependent material moduli we solve a simple boundary value problem and we demonstrate interesting non-classical features exhibited by the model.
We study the flow of a shear-thinning, chemically-reacting fluid that could be used to model the flow of the synovial fluid. The actual geometry where the flow of the synovial fluid takes place is very complicated, and therefore the governing equatio
In this paper we prove uniqueness for an inverse boundary value problem (IBVP) arising in electrodynamics. We assume that the electromagnetic properties of the medium, namely the magnetic permeability, the electric permittivity and the conductivity,
The microscopic formulae of the bulk viscosity $zeta $ and the corresponding relaxation time $tau_{Pi}$ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulae to the pionic fl
In his PhD thesis, Einstein derived an explicit first-order expansion for the effective viscosity of a Stokes fluid with a random suspension of small rigid particles at low density. This formal derivation is based on two assumptions: (i) there is a s
We consider the flow of a viscous incompressible fluid through a porous medium. We allow the permeability of the medium to depend exponentially on the pressure and provide an analysis for this model. We study a splitting formulation where a convectio