ترغب بنشر مسار تعليمي؟ اضغط هنا

Students Responses To Different Representations Of A Vector Addition Question

248   0   0.0 ( 0 )
 نشر من قبل Jeffrey Hawkins
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate if the visual representation of vectors can affect which methods students use to add them. We gave students one of four questions with different graphical representations, asking students to add the same two vectors. For students in an algebra-based class the arrangement of the vectors had a statistically significant effect on the vector addition method chosen while the addition or removal of a grid did not.



قيم البحث

اقرأ أيضاً

This paper reports on an investigation into the correlations between students understandings of introductory astronomy concepts and the correctness and coherency of their written responses to targeted Lecture-Tutorial questions. We assessed the corre ctness and coherency of responses from 454 college-level, general education, introductory astronomy students enrolled in courses taught in the spring of 2010, 2011, and 2012. We hypothesized that students who consistently provided responses with high levels of correctness and coherency would outperform students who did not on multiple measures of astronomy content knowledge. We compared students correctness and coherency scores to their normalized gains on the Light and Spectroscopy Concept Inventory (LSCI) and to their scores on closely-related exam items. Our analysis revealed that no significant correlations exist between students correctness and coherency scores and their LSCI gain scores or exam item scores. However, the participant group in our study did achieve high scores on the LSCI and on closely-related exam items. We hypothesized that these differences are due to the discussions that take place between students which suggests that instructors who teach with active engagement instructional strategies should focus their implementation on ensuring that their students fully engage in the richest possible discourse.
93 - N.G. Holmes , Dhaneesh Kumar , 2017
Developing critical thinking skills is a common goal of an undergraduate physics curriculum. How do students make sense of evidence and what do they do with it? In this study, we evaluated students critical thinking behaviors through their written no tebooks in an introductory physics laboratory course. We compared student behaviors in the Structured Quantitative Inquiry Labs (SQILabs) curriculum to a control group and evaluated the fragility of these behaviors through procedural cueing. We found that the SQILabs were generally effective at improving the quality of students reasoning about data and making decisions from data. These improvements in reasoning and sensemaking were thwarted, however, by a procedural cue. We describe these changes in behavior through the lens of epistemological frames and task orientation, invoked by the instructional moves.
The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics, and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravi tationally microlensed by an extrasolar planet. In order to facilitate instructors abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial, Detecting Exoplanets with Gravitational Microlensing. In this paper, we describe how this new Lecture-Tutorials representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.
Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This course bridges the gap between popular science articles and advanced undergraduate textbooks. Conceptual ideas in the text are reinforced with active learning techniques, such as interactive problem sets and simulation-based labs at various levels. The course is freely available for use and download under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International license.
The ground-breaking image of a black holes event horizon, which captured the publics attention and imagination in April 2019, was captured using the power of interferometry: many separate telescopes working together to observe the cosmos in incredibl e detail. Many recent astrophysical discoveries that have revolutionized the scientific communitys understanding of the cosmos were made by interferometers such as LIGO, ALMA, and the Event Horizon Telescope. Astro 101 instructors who want their students to learn the science behind these discoveries must teach about interferometry. Decades of research show that using active learning strategies can significantly increase students learning and reduces achievement gaps between different demographic groups over what is achieved from traditional lecture-based instruction. As part of an effort to create active learning materials on interferometry, we developed and tested a new Lecture-Tutorial to help Astro 101 students learn about key properties of astronomical interferometers. This paper describes this new Lecture-Tutorial and presents evidence for its effectiveness from a study conducted with 266 Astro 101 students at the University of North Carolina at Chapel Hill.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا