ترغب بنشر مسار تعليمي؟ اضغط هنا

Toolboxes and handing students a hammer: The effects of cueing and instruction on getting students to think critically

94   0   0.0 ( 0 )
 نشر من قبل Natasha Holmes
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Developing critical thinking skills is a common goal of an undergraduate physics curriculum. How do students make sense of evidence and what do they do with it? In this study, we evaluated students critical thinking behaviors through their written notebooks in an introductory physics laboratory course. We compared student behaviors in the Structured Quantitative Inquiry Labs (SQILabs) curriculum to a control group and evaluated the fragility of these behaviors through procedural cueing. We found that the SQILabs were generally effective at improving the quality of students reasoning about data and making decisions from data. These improvements in reasoning and sensemaking were thwarted, however, by a procedural cue. We describe these changes in behavior through the lens of epistemological frames and task orientation, invoked by the instructional moves.

قيم البحث

اقرأ أيضاً

Quantum computing is a growing field at the intersection of physics and computer science. The goal of this article is to highlight a successfully trialled quantum computing course for high school students between the ages of 15 and 18 years old. This course bridges the gap between popular science articles and advanced undergraduate textbooks. Conceptual ideas in the text are reinforced with active learning techniques, such as interactive problem sets and simulation-based labs at various levels. The course is freely available for use and download under the Creative Commons Attribution- NonCommercial-ShareAlike 4.0 International license.
We investigate if the visual representation of vectors can affect which methods students use to add them. We gave students one of four questions with different graphical representations, asking students to add the same two vectors. For students in an algebra-based class the arrangement of the vectors had a statistically significant effect on the vector addition method chosen while the addition or removal of a grid did not.
We describe a study of period changes in 59 RR Lyrae stars, using times of maximum brightness from the GEOS database. The work was carried out by outstanding senior high school students in the University of Toronto Mentorship Program. This paper is w ritten in such a way that high school or undergraduate physics and astronomy students could use it as a guide and template for carrying out original research, by studying period changes in these and other types of variable stars.
We designed a Physics Teaching Lab experience for blind students to measure the wavelength of standing waves on a string. Our adaptation consisted of modifying the determination of the wavelength of the standing wave, which is usually done by visual inspection of the nodes and antinodes, using the sound volume generated by a guitar pickup at different points along the string. This allows one of the blind students at our University to participate simultaneously as their classmates in the laboratory session corresponding to the wave unit of a standard engineering course.
Physics lab courses are integral parts of an undergraduate physics education, and offer a variety of opportunities for learning. Many of these opportunities center around a common learning goal in introductory physics lab courses: measurement uncerta inty. Accordingly, when the stand-alone introductory lab course at the University of Colorado Boulder (CU) was recently transformed, measurement uncertainty was the focus of a learning goal of that transformation. The Physics Measurement Questionnaire (PMQ), a research-based assessment of student understanding around statistical measurement uncertainty, was used to measure the effectiveness of that transformation. Here, we analyze student responses to the PMQ at the beginning and end of the CU course. We also compare such responses from two semesters: one before and one after the transformation. We present evidence that students in both semesters shifted their reasoning in ways aligned with the measurement uncertainty learning goal. Furthermore, we show that more students in the transformed semester shifted in ways aligned with the learning goal, and that those students tended to communicate their reasoning with greater sophistication than students in the original course. These findings provide evidence that even a traditional lab course can support valuable learning, and that transforming such a course to align with well-defined learning goals can result in even more effective learning experiences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا