ترغب بنشر مسار تعليمي؟ اضغط هنا

The Progenitor of Supernova 2011dh/PTF11eon in Messier 51

75   0   0.0 ( 0 )
 نشر من قبل Schuyler D. van Dyk
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have identified a luminous star at the position of supernova (SN) 2011dh/PTF11eon, in pre-SN archival, multi-band images of the nearby, nearly face-on galaxy Messier 51 (M51) obtained by the Hubble Space Telescope with the Advanced Camera for Surveys. This identification has been confirmed, to the highest available astrometric precision, using a Keck-II adaptive-optics image. The available early-time spectra and photometry indicate that the SN is a stripped-envelope, core-collapse Type IIb, with a more compact progenitor (radius ~1e11 cm) than was the case for the well-studied SN IIb 1993J. We infer that the extinction to SN 2011dh and its progenitor arises from a low Galactic foreground contribution, and that the SN environment is of roughly solar metallicity. The detected object has absolute magnitude M_V^0 ~ -7.7 and effective temperature ~6000 K. The stars radius, ~1e13 cm, is more extended than what has been inferred for the SN progenitor. We speculate that the detected star is either an unrelated star very near the position of the actual progenitor, or, more likely, the progenitors companion in a mass-transfer binary system. The position of the detected star in a Hertzsprung-Russell diagram is consistent with an initial mass of 17--19 Msun. The light of this star could easily conceal, even in the ultraviolet, the presence of a stripped, compact, very hot (~1e5 K), nitrogen-rich Wolf-Rayet star progenitor.

قيم البحث

اقرأ أيضاً

On May 31, 2011 UT a supernova (SN) exploded in the nearby galaxy M51 (the Whirlpool Galaxy). We discovered this event using small telescopes equipped with CCD cameras, as well as by the Palomar Transient Factory (PTF) survey, and rapidly confirmed i t to be a Type II supernova. Our early light curve and spectroscopy indicates that PTF11eon resulted from the explosion of a relatively compact progenitor star as evidenced by the rapid shock-breakout cooling seen in the light curve, the relatively low temperature in early-time spectra and the prompt appearance of low-ionization spectral features. The spectra of PTF11eon are dominated by H lines out to day 10 after explosion, but initial signs of He appear to be present. Assuming that He lines continue to develop in the near future, this SN is likely a member of the cIIb (compact IIb; Chevalier and Soderberg 2010) class, with progenitor radius larger than that of SN 2008ax and smaller than the eIIb (extended IIb) SN 1993J progenitor. Our data imply that the object identified in pre-explosion Hubble Space Telescope images at the SN location is possibly a companion to the progenitor or a blended source, and not the progenitor star itself, as its radius (~10^13 cm) would be highly inconsistent with constraints from our post-explosion photometric and spectroscopic data.
We present the detection of the progenitor of the Type II SN 2011dh in archival pre-explosion Hubble Space Telescope images. Using post-explosion Adaptive Optics imaging with Gemini NIRI+ALTAIR, the position of the SN in the pre-explosion images was determined to within 23mas. The progenitor object was found to be consistent with a F8 supergiant star (log L/L_{odot}=4.92+/-0.20 and T_{eff}=6000+/-280K). Through comparison with stellar evolution tracks, this corresponds to a single star at the end of core C-burning with an initial mass of M_{ZAMS}=13+/-3M_{odot}. The possibility of the progenitor source being a cluster is rejected, on the basis of: 1) the source is not spatially extended; 2) the absence of excess Halpha, emission; and 3) the poor fit to synthetic cluster SEDs. It is unclear if a binary companion is contributing to the observed SED, although given the excellent correspondence of the observed photometry to a single star SED we suggest the companion does not contribute significantly. Early photometric and spectroscopic observations show fast evolution similar to the transitional Type IIb SN 2008ax, and suggest that a large amount of the progenitors hydrogen envelope was removed before explosion.
We present observations of supernova (SN) 2008ge, which is spectroscopically similar to the peculiar SN 2002cx, and its pre-explosion site that indicate that its progenitor was probably a white dwarf. NGC 1527, the host galaxy of SN 2008ge, is an S0 galaxy with no evidence of star formation or massive stars. Astrometrically matching late-time imaging of SN 2008ge to pre-explosion HST imaging, we constrain the luminosity of the progenitor star. Since SN 2008ge has no indication of hydrogen or helium in its spectrum, its progenitor must have lost its outer layers before exploding, requiring that it be a white dwarf, a Wolf-Rayet star, or a lower-mass star in a binary system. Observations of the host galaxy show no signs of individual massive stars, star clusters, or H II regions at the SN position or anywhere else, making a Wolf-Rayet progenitor unlikely. Late-time spectroscopy of SN 2008ge show strong [Fe II] lines with large velocity widths compared to other members of this class at similar epochs. These previously unseen features indicate that a significant amount of the SN ejecta is Fe (presumably the result of radioactive decay of 56Ni generated in the SN), further supporting a thermonuclear explosion. Placing the observations of SN 2008ge in the context of observations of other objects in the class of SN, we suggest that the progenitor was most likely a white dwarf.
Type IIb Supernova (SN) 2011dh, with conclusive detection of an unprecedented Yellow Supergiant (YSG) progenitor, provides an excellent opportunity to deepen our understanding on the massive star evolution in the final centuries toward the SN explosi on. In this paper, we report on detection and analyses of thermal X-ray emission from SN IIb 2011dh at ~500 days after the explosion on Chandra archival data, providing a solidly derived mass loss rate of an YSG progenitor for the first time. We find that the circumstellar media (CSM) should be dense, more than that expected from a Wolf-Rayet (WR) star by one order of magnitude. The emission is powered by a reverse shock penetrating into an outer envelope, fully consistent with the YSG progenitor but not with a WR progenitor. The density distribution at the outermost ejecta is much steeper than that expected from a compact WR star, and this finding must be taken into account in modeling the early UV/optical emission from SNe IIb. The derived mass loss rate is 3 x 10^{-6} Msun/year for the mass loss velocity of ~20 km/s in the final ~1,300 years before the explosion. The derived mass loss properties are largely consistent with the standard wind mass loss expected for a giant star. This is not sufficient to be a main driver to expel nearly all the hydrogen envelope. Therefore, the binary interaction, with a huge mass transfer having taken place at >1,300 years before the explosion, is a likely scenario to produce the YSG progenitor.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا