ﻻ يوجد ملخص باللغة العربية
The $F$-signature is a numerical invariant defined by the number of free direct summands in the Frobenius push-forward, and it measures singularities in positive characteristic. It can be generalized by focussing on the number of non-free direct summands. In this paper, we provide several methods to compute the (generalized) $F$-signature of a Hibi ring which is a special class of toric rings. In particular, we show that it can be computed by counting the elements in the symmetric group satisfying certain conditions. As an application, we also give the formula of the (generalized) $F$-signature for some Segre products of polynomial rings.
In this paper we study monomial ideals attached to posets, introduce generalized Hibi rings and investigate their algebraic and homological properties. The main tools to study these objects are Groebner basis theory, the concept of sortability due to
In the present paper, we consider the problem when the toric ring arising from an integral cyclic polytope is Cohen-Macaulay by discussing Serres condition and we give a complete characterization when that is Gorenstein. Moreover, we study the normal
There are a large number of theorems detailing the homological properties of the Stanley--Reisner ring of a simplicial complex. Here we attempt to generalize some of these results to the case of a simplicial poset. By investigating the combinatorics
Levelness and almost Gorensteinness are well-studied properties on graded rings as a generalized notion of Gorensteinness. In the present paper, we study those properties for the edge rings of the complete multipartite graphs, denoted by $Bbbk[K_{r_1
The goal of the present paper is the study of some algebraic invariants of Stanley-Reisner rings of Cohen-Macaulay simplicial complexes of dimension $d - 1$. We prove that the inequality $d leq mathrm{reg}(Delta) cdot mathrm{type}(Delta)$ holds for a