ترغب بنشر مسار تعليمي؟ اضغط هنا

A Fault-Resistant Asynchronous Clock Function

223   0   0.0 ( 0 )
 نشر من قبل Ezra N. Hoch
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider an asynchronous network in a shared-memory environment consisting of n nodes. Assume that up to f of the nodes might be Byzantine (n > 12f), where the adversary is full-information and dynamic (sometimes called adaptive). In addition, the non-Byzantine nodes may undergo transient failures. Nodes advance in atomic steps, which consist of reading all registers, performing some calculation and writing to all registers. This paper contains three main contributions. First, the clock-function problem is defined, which is a generalization of the clock synchronization problem. This generalization encapsulates previous clock synchronization problem definitions while extending them to the current papers model. Second, a randomized asynchronous self-stabilizing Byzantine tolerant clock synchronization algorithm is presented. In the construction of the clock synchronization algorithm, a building block that ensures different nodes advance at similar rates is developed. This feature is the third contribution of the paper. It is self-stabilizing and Byzantine tolerant and can be used as a building block for different algorithms that operate in an asynchronous self-stabilizing Byzantine model. The convergence time of the presented algorithm is exponential. Observe that in the asynchronous setting the best known full-information dynamic Byzantine agreement also has expected exponential convergence time, even though currently there is no known reduction between the two.



قيم البحث

اقرأ أيضاً

The celebrated result of Fischer, Lynch and Paterson is the fundamental lower bound for asynchronous fault tolerant computation: any 1-crash resilient asynchronous agreement protocol must have some (possibly measure zero) probability of not terminati ng. In 1994, Ben-Or, Kelmer and Rabin published a proof-sketch of a lesser known lower bound for asynchronous fault tolerant computation with optimal resilience against a Byzantine adversary: if $nle 4t$ then any t-resilient asynchronous verifiable secret sharing protocol must have some non-zero probability of not terminating. Our main contribution is to revisit this lower bound and provide a rigorous and more general proof. Our second contribution is to show how to avoid this lower bound. We provide a protocol with optimal resilience that is almost surely terminating for a strong common coin functionality. Using this new primitive we provide an almost surely terminating protocol with optimal resilience for asynchronous Byzantine agreement that has a new fair validity property. To the best of our knowledge this is the first asynchronous Byzantine agreement with fair validity in the information theoretic setting.
Many problems can be solved by iteration by multiple participants (processors, servers, routers etc.). Previous mathematical models for such asynchronous iterations assume a single function being iterated by a fixed set of participants. We will call such iterations static since the systems configuration does not change. However in several real-world examples, such as inter-domain routing, both the function being iterated and the set of participants change frequently while the system continues to function. In this paper we extend Uresin & Duboiss work on static iterations to develop a model for this class of dynamic or always on asynchronous iterations. We explore what it means for such an iteration to be implemented correctly, and then prove two different conditions on the set of iterated functions that guarantee the full asynchronous iteration satisfies this new definition of correctness. These results have been formalised in Agda and the resulting library is publicly available.
Serverless computing has grown in popularity in recent years, with an increasing number of applications being built on Functions-as-a-Service (FaaS) platforms. By default, FaaS platforms support retry-based fault tolerance, but this is insufficient f or programs that modify shared state, as they can unwittingly persist partial sets of updates in case of failures. To address this challenge, we would like atomic visibility of the updates made by a FaaS application. In this paper, we present AFT, an atomic fault tolerance shim for serverless applications. AFT interposes between a commodity FaaS platform and storage engine and ensures atomic visibility of updates by enforcing the read atomic isolation guarantee. AFT supports new protocols to guarantee read atomic isolation in the serverless setting. We demonstrate that aft introduces minimal overhead relative to existing storage engines and scales smoothly to thousands of requests per second, while preventing a significant number of consistency anomalies.
Federated learning (FL) is experiencing a fast booming with the wave of distributed machine learning and ever-increasing privacy concerns. In the FL paradigm, global model aggregation is handled by a centralized aggregate server based on local update d gradients trained on local nodes, which mitigates privacy leakage caused by the collection of sensitive information. With the increased computing and communicating capabilities of edge and IoT devices, applying FL on heterogeneous devices to train machine learning models becomes a trend. The synchronous aggregation strategy in the classic FL paradigm cannot effectively use the resources, especially on heterogeneous devices, due to its waiting for straggler devices before aggregation in each training round. Furthermore, in real-world scenarios, the disparity of data dispersed on devices (i.e. data heterogeneity) downgrades the accuracy of models. As a result, many asynchronous FL (AFL) paradigms are presented in various application scenarios to improve efficiency, performance, privacy, and security. This survey comprehensively analyzes and summarizes existing variants of AFL according to a novel classification mechanism, including device heterogeneity, data heterogeneity, privacy and security on heterogeneous devices, and applications on heterogeneous devices. Finally, this survey reveals rising challenges and presents potentially promising research directions in this under-investigated field.
Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called Wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committees approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. Furthermore, we consider permissioned blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our payment channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا