ﻻ يوجد ملخص باللغة العربية
Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called Wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committees approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. Furthermore, we consider permissioned blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our payment channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.
A mediator can help non-cooperative agents obtain an equilibrium that may otherwise not be possible. We study the ability of players to obtain the same equilibrium without a mediator, using only cheap talk, that is, nonbinding pre-play communication.
Consensus protocols for asynchronous networks are usually complex and inefficient, leading practical systems to rely on synchronous protocols. This paper attempts to simplify asynchronous consensus by building atop a novel threshold logical clock abs
In this paper we extend the Multidimensional Byzantine Agreement (MBA) Protocol arXiv:2105.13487v2, a leaderless Byzantine agreement for vectors of arbitrary values, into the emph{Cob} protocol, that works in Asynchronous Gossiping (AG) networks. Thi
Micropayment channels are the most prominent solution to the limitation on transaction throughput in current blockchain systems. However, in practice channels are risky because participants have to be online constantly to avoid fraud, and inefficient
In this paper, we consider the problem of cross-chain payment whereby customers of different escrows -- implemented by a bank or a blockchain smart contract -- successfully transfer digital assets without trusting each other. Prior to this work, cros