ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamic Asynchronous Iterations

102   0   0.0 ( 0 )
 نشر من قبل Matthew Daggitt Dr
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Many problems can be solved by iteration by multiple participants (processors, servers, routers etc.). Previous mathematical models for such asynchronous iterations assume a single function being iterated by a fixed set of participants. We will call such iterations static since the systems configuration does not change. However in several real-world examples, such as inter-domain routing, both the function being iterated and the set of participants change frequently while the system continues to function. In this paper we extend Uresin & Duboiss work on static iterations to develop a model for this class of dynamic or always on asynchronous iterations. We explore what it means for such an iteration to be implemented correctly, and then prove two different conditions on the set of iterated functions that guarantee the full asynchronous iteration satisfies this new definition of correctness. These results have been formalised in Agda and the resulting library is publicly available.



قيم البحث

اقرأ أيضاً

217 - Yao Chen , Weiguo Xia , Ming Cao 2018
Distributed coordination algorithms (DCA) carry out information processing processes among a group of networked agents without centralized information fusion. Though it is well known that DCA characterized by an SIA (stochastic, indecomposable, aperi odic) matrix generate consensus asymptotically via synchronous iterations, the dynamics of DCA with asynchronous iterations have not been studied extensively, especially when viewed as stochastic processes. This paper aims to show that for any given irreducible stochastic matrix, even non-SIA, the corresponding DCA lead to consensus successfully via random asynchronous iterations under a wide range of conditions on the transition probability. Particularly, the transition probability is neither required to be independent and identically distributed, nor characterized by a Markov chain.
Off-chain protocols (channels) are a promising solution to the scalability and privacy challenges of blockchain payments. Current proposals, however, require synchrony assumptions to preserve the safety of a channel, leaking to an adversary the exact amount of time needed to control the network for a successful attack. In this paper, we introduce Brick, the first payment channel that remains secure under network asynchrony and concurrently provides correct incentives. The core idea is to incorporate the conflict resolution process within the channel by introducing a rational committee of external parties, called Wardens. Hence, if a party wants to close a channel unilaterally, it can only get the committees approval for the last valid state. Brick provides sub-second latency because it does not employ heavy-weight consensus. Instead, Brick uses consistent broadcast to announce updates and close the channel, a light-weight abstraction that is powerful enough to preserve safety and liveness to any rational parties. Furthermore, we consider permissioned blockchains, where the additional property of auditability might be desired for regulatory purposes. We introduce Brick+, an off-chain construction that provides auditability on top of Brick without conflicting with its privacy guarantees. We formally define the properties our payment channel construction should fulfill, and prove that both Brick and Brick+ satisfy them. We also design incentives for Brick such that honest and rational behavior aligns. Finally, we provide a reference implementation of the smart contracts in Solidity.
The ubiquity of deep neural networks (DNNs) continues to rise, making them a crucial application class for hardware optimizations. However, detailed profiling and characterization of DNN training remains difficult as these applications often run for hours to days on real hardware. Prior works exploit the iterative nature of DNNs to profile a few training iterations. While such a strategy is sound for networks like convolutional neural networks (CNNs), where the nature of the computation is largely input independent, we observe in this work that this approach is sub-optimal for sequence-based neural networks (SQNNs) such as recurrent neural networks (RNNs). The amount and nature of computations in SQNNs can vary for each input, resulting in heterogeneity across iterations. Thus, arbitrarily selecting a few iterations is insufficient to accurately summarize the behavior of the entire training run. To tackle this challenge, we carefully study the factors that impact SQNN training iterations and identify input sequence length as the key determining factor for variations across iterations. We then use this observation to characterize all iterations of an SQNN training run (requiring no profiling or simulation of the application) and select representative iterations, which we term SeqPoints. We analyze two state-of-the-art SQNNs, DeepSpeech2 and Googles Neural Machine Translation (GNMT), and show that SeqPoints can represent their entire training runs accurately, resulting in geomean errors of only 0.11% and 0.53%, respectively, when projecting overall runtime and 0.13% and 1.50% when projecting speedups due to architectural changes. This high accuracy is achieved while reducing the time needed for profiling by 345x and 214x for the two networks compared to full training runs. As a result, SeqPoint can enable analysis of SQNN training runs in mere minutes instead of hours or days.
We present a simple library which equips MPI implementations with truly asynchronous non-blocking point-to-point operations, and which is independent of the underlying communication infrastructure. It utilizes the MPI profiling interface (PMPI) and t he MPI_THREAD_MULTIPLE thread compatibility level, and works with curre
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا