ترغب بنشر مسار تعليمي؟ اضغط هنا

Online Stochastic Matching: Online Actions Based on Offline Statistics

318   0   0.0 ( 0 )
 نشر من قبل Shayan Oveis Gharan
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the online stochastic matching problem proposed by Feldman et al. [FMMM09] as a model of display ad allocation. We are given a bipartite graph; one side of the graph corresponds to a fixed set of bins and the other side represents the set of possible ball types. At each time step, a ball is sampled independently from the given distribution and it needs to be matched upon its arrival to an empty bin. The goal is to maximize the number of allocations. We present an online algorithm for this problem with a competitive ratio of 0.702. Before our result, algorithms with a competitive ratio better than $1-1/e$ were known under the assumption that the expected number of arriving balls of each type is integral. A key idea of the algorithm is to collect statistics about the decisions of the optimum offline solution using Monte Carlo sampling and use those statistics to guide the decisions of the online algorithm. We also show that our algorithm achieves a competitive ratio of 0.705 when the rates are integral. On the hardness side, we prove that no online algorithm can have a competitive ratio better than 0.823 under the known distribution model (and henceforth under the permutation model). This improves upon the 5/6 hardness result proved by Goel and Mehta cite{GM08} for the permutation model.



قيم البحث

اقرأ أيضاً

We study the minimum-cost metric perfect matching problem under online i.i.d arrivals. We are given a fixed metric with a server at each of the points, and then requests arrive online, each drawn independently from a known probability distribution ov er the points. Each request has to be matched to a free server, with cost equal to the distance. The goal is to minimize the expected total cost of the matching. Such stochastic arrival models have been widely studied for the maximization variants of the online matching problem; however, the only known result for the minimization problem is a tight $O(log n)$-competitiveness for the random-order arrival model. This is in contrast with the adversarial model, where an optimal competitive ratio of $O(log n)$ has long been conjectured and remains a tantalizing open question. In this paper, we show improved results in the i.i.d arrival model. We show how the i.i.d model can be used to give substantially better algorithms: our main result is an $O((log log log n)^2)$-competitive algorithm in this model. Along the way we give a $9$-competitive algorithm for the line and tree metrics. Both results imply a strict separation between the i.i.d model and the adversarial and random order models, both for general metrics and these much-studied metrics.
Online bipartite matching with edge arrivals remained a major open question for a long time until a recent negative result by [Gamlath et al. FOCS 2019], who showed that no online policy is better than the straightforward greedy algorithm, i.e., no o nline algorithm has a worst-case competitive ratio better than $0.5$. In this work, we consider the bipartite matching problem with edge arrivals in a natural stochastic framework, i.e., Bayesian setting where each edge of the graph is independently realized according to a known probability distribution. We focus on a natural class of prune & greedy online policies motivated by practical considerations from a multitude of online matching platforms. Any prune & greedy algorithm consists of two stages: first, it decreases the probabilities of some edges in the stochastic instance and then runs greedy algorithm on the pruned graph. We propose prune & greedy algorithms that are $0.552$-competitive on the instances that can be pruned to a $2$-regular stochastic bipartite graph, and $0.503$-competitive on arbitrary bipartite graphs. The algorithms and our analysis significantly deviate from the prior work. We first obtain analytically manageable lower bound on the size of the matching, which leads to a non linear optimization problem. We further reduce this problem to a continuous optimization with a constant number of parameters that can be solved using standard software tools.
The rich literature on online Bayesian selection problems has long focused on so-called prophet inequalities, which compare the gain of an online algorithm to that of a prophet who knows the future. An equally-natural, though significantly less well- studied benchmark is the optimum online algorithm, which may be omnipotent (i.e., computationally-unbounded), but not omniscient. What is the computational complexity of the optimum online? How well can a polynomial-time algorithm approximate it? We study the above questions for the online stochastic maximum-weight matching problem under vertex arrivals. For this problem, a number of $1/2$-competitive algorithms are known against optimum offline. This is the best possible ratio for this problem, as it generalizes the original single-item prophet inequality problem. We present a polynomial-time algorithm which approximates the optimal online algorithm within a factor of $0.51$ -- beating the best-possible prophet inequality. In contrast, we show that it is PSPACE-hard to approximate this problem within some constant $alpha < 1$.
Online bipartite matching and its variants are among the most fundamental problems in the online algorithms literature. Karp, Vazirani, and Vazirani (STOC 1990) introduced an elegant algorithm for the unweighted problem that achieves an optimal compe titive ratio of $1-1/e$. Later, Aggarwal et al. (SODA 2011) generalized their algorithm and analysis to the vertex-weighted case. Little is known, however, about the most general edge-weighted problem aside from the trivial $1/2$-competitive greedy algorithm. In this paper, we present the first online algorithm that breaks the long-standing $1/2$ barrier and achieves a competitive ratio of at least $0.5086$. In light of the hardness result of Kapralov, Post, and Vondrak (SODA 2013) that restricts beating a $1/2$ competitive ratio for the more general problem of monotone submodular welfare maximization, our result can be seen as strong evidence that edge-weighted bipartite matching is strictly easier than submodular welfare maximization in the online setting. The main ingredient in our online matching algorithm is a novel subroutine called online correlated selection (OCS), which takes a sequence of pairs of vertices as input and selects one vertex from each pair. Instead of using a fresh random bit to choose a vertex from each pair, the OCS negatively correlates decisions across different pairs and provides a quantitative measure on the level of correlation. We believe our OCS technique is of independent interest and will find further applications in other online optimization problems.
We study an online hypergraph matching problem with delays, motivated by ridesharing applications. In this model, users enter a marketplace sequentially, and are willing to wait up to $d$ timesteps to be matched, after which they will leave the syste m in favor of an outside option. A platform can match groups of up to $k$ users together, indicating that they will share a ride. Each group of users yields a match value depending on how compatible they are with one another. As an example, in ridesharing, $k$ is the capacity of the service vehicles, and $d$ is the amount of time a user is willing to wait for a driver to be matched to them. We present results for both the utility maximization and cost minimization variants of the problem. In the utility maximization setting, the optimal competitive ratio is $frac{1}{d}$ whenever $k geq 3$, and is achievable in polynomial-time for any fixed $k$. In the cost minimization variation, when $k = 2$, the optimal competitive ratio for deterministic algorithms is $frac{3}{2}$ and is achieved by a polynomial-time thresholding algorithm. When $k>2$, we show that a polynomial-time randomized batching algorithm is $(2 - frac{1}{d}) log k$-competitive, and it is NP-hard to achieve a competitive ratio better than $log k - O (log log k)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا