ترغب بنشر مسار تعليمي؟ اضغط هنا

Collectivity at N=50: 82Ge and 84Se

81   0   0.0 ( 0 )
 نشر من قبل Alexandra Gade
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The neutron-rich N=50 isotones 82Ge and 84Se were investigated using intermediate-energy Coulomb excitation on a 197Au target and inelastic scattering on 9Be. As typical for intermediate-energy Coulomb excitation with projectile energies exceeding 70 MeV/nucleon, only the first 2^+ states were excited in 82Ge and 84Se. However, in the inelastic scattering on a 9Be target, a strong population of the first 4^+ state was observed for 84Se, while there is no indication of a similarly strong excitation of the corresponding state in the neighboring even-even isotone 82Ge. The results are discussed in the framework of systematics and shell-model calculations using three different effective interactions.



قيم البحث

اقرأ أيضاً

121 - W.Rother , A.Dewald , H.Iwasaki 2010
The transition rates for the 2_{1}^{+} states in 62,64,66Fe were studied using the Recoil Distance Doppler-Shift technique applied to projectile Coulomb excitation reactions. The deduced E2 strengths illustrate the enhanced collectivity of the neutro n-rich Fe isotopes up to N=40. The results are interpreted by the generalized concept of valence proton symmetry which describes the evolution of nuclear structure around N=40 as governed by the number of valence protons with respect to Z~30. The deformation suggested by the experimental data is reproduced by state-of-the-art shell calculations with a new effective interaction developed for the fpgd valence space.
119 - R. Winkler , A. Gade , T. Baugher 2012
We report on the first experimental study of quadrupole collectivity in the very neutron-rich nuclei uc{47,48}{Ar} using intermediate-energy Coulomb excitation. These nuclei are located along the path from doubly-magic Ca to collective S and Si isot opes, a critical region of shell evolution and structural change. The deduced $B(E2)$ transition strengths are confronted with large-scale shell-model calculations in the $sdpf$ shell using the state-of-the-art SDPF-U and EPQQM effective interactions. The comparison between experiment and theory indicates that a shell-model description of Ar isotopes around N=28 remains a challenge.
70 - K. Schweda 2005
Flow measurements of multi-strange baryons from Au + Au collisions at RHIC energies demonstrate that collectivity develops before hadronization, among partons. To pin down the partonic EOS of matter produced at RHIC, the status of thermalization in s uch collisions has to be addressed. We propose to measure collective flow of heavy-flavor quarks, e.g. charm quarks, as an indicator of thermalization of light flavors ($u,d,s$). The completion of the time of flight barrel and the proposed upgrade with a $mu$Vertex detector for heavy-flavor identification in STAR are well suited for achieving these goals.
142 - H. Wang , N. Aoi , S. Takeuchi 2013
The neutron-rich, even-even 122,124,126Pd isotopes has been studied via in-beam gamma-ray spectroscopy at the RIKEN Radioactive Isotope Beam Factory. Excited states at 499(9), 590(11), and 686(17) keV were found in the three isotopes, which we assign to the respective 2+ -> 0+ decays. In addition, a candidate for the 4+ state at 1164(20) keV was observed in 122Pd. The resulting Ex(2+) systematics are essentially similar to those of the Xe (Z=54) isotopic chain and theoretical prediction by IBM-2, suggesting no serious shell quenching in the Pd isotopes in the vicinity of N=82.
90 - N. Aoi , S. Kanno , S. Takeuchi 2010
The neutron-rich nucleus 74Ni was studied with inverse-kinematics inelastic proton scattering using a 74Ni radioactive beam incident on a liquid hydrogen targetat a center-of-mass energy of 80 MeV. From the measured de-excitation gamma-rays, the popu lation of the first 2+ state was quantified. The angle-integrated excitation cross section was determined to be 14(4) mb. A deformation length of delta = 1.04(16) fm was extracted in comparison with distorted wave theory, which suggests that the enhancement of collectivity established for 70Ni continues up to 74Ni. A comparison with results of shell model and quasi-particle random phase approximation calculations indicates that the magic character of Z = 28 or N = 50 is weakened in 74Ni.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا