ﻻ يوجد ملخص باللغة العربية
We examine how initial coherences in open chiral systems affect distinguishability of pure versus mixed states and purity decay. Interaction between a system and an environment is modeled by a continuous position measurement and a two-level approximation is taken for the system. The resultant analytical solution is explored for various parameters, with emphasis on the interplay of initial coherences of the system and dephasing rate in determining the purity decay and differences in the time evolution of pure vs. mixed initial states. %the distinguishability and the decoherence process. Implications of the results on several fundamental problems are noted.
We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation f
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bo
The universal quantum homogeniser can transform a qubit from any state to any other state with arbitrary accuracy, using only unitary transformations to perform this task. Here we present an implementation of a finite quantum homogeniser using nuclea
We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation ca
It is usually considered that the spectrum of an optical cavity coupled to an atomic medium does not exhibit a normal-mode splitting unless the system satisfies the strong coupling condition, meaning the Rabi frequency of the coherent coupling exceed