ترغب بنشر مسار تعليمي؟ اضغط هنا

Effects of initial coherence on distinguishability of pure/mixed states and chiral stability in an open chiral system

223   0   0.0 ( 0 )
 نشر من قبل Heekyung Han
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine how initial coherences in open chiral systems affect distinguishability of pure versus mixed states and purity decay. Interaction between a system and an environment is modeled by a continuous position measurement and a two-level approximation is taken for the system. The resultant analytical solution is explored for various parameters, with emphasis on the interplay of initial coherences of the system and dephasing rate in determining the purity decay and differences in the time evolution of pure vs. mixed initial states. %the distinguishability and the decoherence process. Implications of the results on several fundamental problems are noted.



قيم البحث

اقرأ أيضاً

We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation f or a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energy and the decoherence. We focus on factors affecting the distinguishability as measured by population difference between the initially pure and mixed states and on the chiral stability as measured by the purity decay.
145 - Xiaoqian Zhang 2017
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bo b, ldots and $m_n$ belongs to Susan. We first present the pure tripartite distinguishable orthogonal quantum states by LOCC in $m_1otimes m_2otimes m_3$. With the conclusion in $m_1otimes m_2otimes m_3$, we prove distinguishability or indistinguishability of some quantum states. At last, we give the $n$-party distinguishable quantum states in $m_1otimes m_2otimescdotsotimes m_n$. Our study further reveals quantum nonlocality in multipartite high-dimensional.
126 - Maria Violaris 2020
The universal quantum homogeniser can transform a qubit from any state to any other state with arbitrary accuracy, using only unitary transformations to perform this task. Here we present an implementation of a finite quantum homogeniser using nuclea r magnetic resonance (NMR), with a four-qubit system. We compare the homogenisation of a mixed state to a pure state, and the reverse process. After accounting for the effects of decoherence in the system, we find the experimental results to be consistent with the theoretical symmetry in how the qubit states evolve in the two cases. We analyse the implications of this symmetry by interpreting the homogeniser as a physical implementation of pure state preparation and information scrambling.
We study the coherence trapping of a qubit correlated initially with a non-Markovian bath in a pure dephasing channel. By considering the initial qubit-bath correlation and the bath spectral density, we find that the initial qubit-bath correlation ca n lead to a more efficient coherence trapping than that of the initially separable qubit-bath state. The stationary coherence in the long time limit can be maximized by optimizing the parameters of the initially correlated qubit-bath state and the bath spectral density. In addition, the effects of this initial correlation on the maximal evolution speed for the qubit trapped to its stationary coherence state are also explored.
It is usually considered that the spectrum of an optical cavity coupled to an atomic medium does not exhibit a normal-mode splitting unless the system satisfies the strong coupling condition, meaning the Rabi frequency of the coherent coupling exceed s the decay rates of atom and cavity excitations. Here we show that this need not be the case, but depends on the way in which the coupled system is probed. Measurements of the reflection of a probe laser from the input mirror of an overdamped cavity reveal an avoided crossing in the spectrum which is not observed when driving the atoms directly and measuring the Purcell-enhanced cavity emission. We understand these observations by noting a formal correspondence with electromagnetically-induced transparency of a three-level atom in free space, where our cavity acts as the absorbing medium and the coupled atoms play the role of the control field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا