ﻻ يوجد ملخص باللغة العربية
In this paper, we mainly study the local distinguishable multipartite quantum states by local operations and classical communication (LOCC) in $m_1otimes m_2otimesldotsotimes m_n$ , where the quantum system $m_1$ belongs to Alice, $m_2$ belongs to Bob, ldots and $m_n$ belongs to Susan. We first present the pure tripartite distinguishable orthogonal quantum states by LOCC in $m_1otimes m_2otimes m_3$. With the conclusion in $m_1otimes m_2otimes m_3$, we prove distinguishability or indistinguishability of some quantum states. At last, we give the $n$-party distinguishable quantum states in $m_1otimes m_2otimescdotsotimes m_n$. Our study further reveals quantum nonlocality in multipartite high-dimensional.
In this article, we show a sufficient and necessary condition for locally distinguishable bipartite states via one-way local operations and classical communication (LOCC). With this condition, we present some minimal structures of one-way LOCC indist
A quantum ensemble ${(p_x, rho_x)}$ is a set of quantum states each occurring randomly with a given probability. Quantum ensembles are necessary to describe situations with incomplete a priori information, such as the output of a stochastic quantum c
Fidelity plays an important role in measuring distances between pairs of quantum states, of single as well as multiparty systems. Based on the concept of fidelity, we introduce a physical quantity, shared purity, for arbitrary pure or mixed quantum s
We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinel
We consider the distinguishability of Gaussian states from the view point of continuous-variable quantum cryptography using post-selection. Specifically, we use the probability of error to distinguish between two pure coherent (squeezed) states and t