ﻻ يوجد ملخص باللغة العربية
We study the problem of finding a mapping $f$ from a set of points into the real line, under ordinal triple constraints. An ordinal constraint for a triple of points $(u,v,w)$ asserts that $|f(u)-f(v)|<|f(u)-f(w)|$. We present an approximation algorithm for the dense case of this problem. Given an instance that admits a solution that satisfies $(1-varepsilon)$-fraction of all constraints, our algorithm computes a solution that satisfies $(1-O(varepsilon^{1/8}))$-fraction of all constraints, in time $O(n^7) + (1/varepsilon)^{O(1/varepsilon^{1/8})} n$.
Image ranking is to rank images based on some known ranked images. In this paper, we propose an improved linear ordinal distance metric learning approach based on the linear distance metric learning model. By decomposing the distance metric $A$ as $L
Polynomial regression is a basic primitive in learning and statistics. In its most basic form the goal is to fit a degree $d$ polynomial to a response variable $y$ in terms of an $n$-dimensional input vector $x$. This is extremely well-studied with m
Distributed machine learning (ML) at network edge is a promising paradigm that can preserve both network bandwidth and privacy of data providers. However, heterogeneous and limited computation and communication resources on edge servers (or edges) po
Uncertainty is the only certainty there is. Modeling data uncertainty is essential for regression, especially in unconstrained settings. Traditionally the direct regression formulation is considered and the uncertainty is modeled by modifying the out
We study the problem of learning the causal relationships between a set of observed variables in the presence of latents, while minimizing the cost of interventions on the observed variables. We assume access to an undirected graph $G$ on the observe