ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Calculation of Ne IX Line Diagnostics

35   0   0.0 ( 0 )
 نشر من قبل Randall Smith
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe the effect that new atomic calculations, including fully-relativistic R-matrix calculations of collisional excitation rates and level-specific dielectronic and radiative recombination rates, have on line ratios from the astrophysically significant ion Ne IX. The new excitation rates systematically change some predicted Ne IX line ratios by 25% at temperatures at or below the temperature of maximum emissivity (4x10^6 K), while the new recombination rates lead to systematic changes at higher temperatures. The new line ratios are shown to agree with observations of Capella and sigma^2 CrB significantly better than older line ratios, showing that 25-30% accuracy in atomic rates is inadequate for high-resolution X-ray observations from existing spectrometers.

قيم البحث

اقرأ أيضاً

The C I 135.58 line is located in the wavelength range of NASAs Interface Region Imagin Spectrograph (IRIS) small explorer mission. We here study the formation and diagnostic potential of this line by means of non local-thermodynamic-equilibrium mode ling, employing both 1D and 3D radiation-magnetohydrodynamic models. The C I/C II ionization balance is strongly influenced by photoionization by Ly-alpha emission. The emission in the C I 135.58 line is dominated by a recombination cascade and the line forming region is optically thick. The Doppler shift of the line correlates strongly with the vertical velocity in its line forming region, which is typically located at 1.5 Mm height. With IRIS the C I 135.58 line is usually observed together with the O I 135.56 line, and from the Doppler shift of both lines, we obtain the velocity difference between the line forming regions of the two lines. From the ratio of the C I/O I line core intensity, we can determine the distance between the C I and the O I forming layers. Combined with the velocity difference, the velocity gradient at mid-chromospheric heights can be derived. The C I/O I total intensity line ratio is correlated with the inverse of the electron density in the mid-chromosphere. We conclude that the C I 135.58 line is an excellent probe of the middle chromosphere by itself, and together with the O I 135.56 line the two lines provide even more information, which complements other powerful chromospheric diagnostics of IRIS such as the Mg II h and k lines and the C II lines around 133.5 nm.
Cosmic neutrinos above a PeV are produced either within astrophysical sources or when ultra-high energy cosmic rays interact in transit through the cosmic background radiation. Detection of these neutrinos will be essential for understanding cosmic r ay acceleration, composition and source evolution. By using the Earth as a tau neutrino converter for upward-going extensive air showers from tau decays, balloon-borne and space-based instruments can take advantage of a large volume and mass of the terrestrial neutrino target. The theoretical inputs and uncertainties in determining the tau lepton exit probabilities and their translation to detection acceptance will be discussed in the context of a new calculation we have performed. We quantify the experimental detection capability based on our calculation, including using the Probe of Extreme Multi-Messenger Astrophysics (POEMMA) concept study response parameters for optical air Cherenkov detection. These case studies are used to illustrate the features and uncertainties in upward tau air shower detection.
We investigate the mechanism to reproduce notable spectral features at the ignition phase of nova explosion observed for a super-Eddington X-ray transient source MAXI J0158$-$744 in the Small Magellanic Cloud. These are a strong Ne IX emission line a t 0.92 keV with a large equivalent width of $0.32^{+0.21}_{-0.11}$ keV and the absence of Ne X line at 1.02 keV. In this paper, we calculate the radiative transfer using a Monte Carlo code, taking into account the line blanketing effect due to transitions of N, O, Ne, Mg and Al ions in an accelerating wind emanating from a white dwarf with a structure based on a spherically symmetric stationary model. We found that the strong Ne IX line can be reproduced if the mass fraction of Ne is enhanced to $10^{-3}$ or more and that of O is reduced to $sim5times10^{-9}$ or less and that the absence of other lines including Ne X ions at higher energies can be also reproduced by the line blanketing effect. This enhancement of the Ne mass fraction indicates that the ejecta are enriched by Ne dredged up from the surface of the white dwarf composed of O, Ne, and Mg rather than C and O, as already pointed out in the previous work. We argue that the CNO cycle driving this nova explosion converted most of C and O into N and thus reduced the O mass fraction.
He-like ions produce distinctive series of triplet lines under various astrophysical conditions. However, this emission can be affected by line absorption from Li-like ions in the same medium. We investigate this absorption of He-like triplets and pr esent the implications for diagnostics of plasmas in photoionisation equilibrium using the line ratios of the triplets. Our computations were carried out for the O VI and Fe XXIV absorption of the O VII and Fe XXV triplet emission lines, respectively. The fluorescent emission by the Li-like ions and continuum absorption of the He-like ion triplet lines are also investigated. We determine the absorption of the triplet lines as a function of Li-like ion column density and velocity dispersion of the emitting and absorbing medium. We find O VI line absorption can significantly alter the O VII triplet line ratios in optically-thin plasmas, by primarily absorbing the intercombination lines, and to a lesser extent, the forbidden line. Because of intrinsic line absorption by O VI inside a photoionised plasma, the predicted ratio of forbidden to intercombination line intensity for the O VII triplet increases from 4 up to an upper limit of 16. This process can explain the triplet line ratios that are higher than expected and that are seen in some X-ray observations of photoionised plasmas. For the Fe XXV triplet, line absorption by Fe XXIV becomes less apparent owing to significant fluorescent emission by Fe XXIV. Without taking the associated Li-like ion line absorption into account, the density diagnosis of photoionised plasmas using the observed line ratios of the He-like ion triplet emission lines can be unreliable, especially for low-Z ions.
A dramatic increase in the accuracy and statistics of space-borne cosmic ray (CR) measurements has yielded several breakthroughs over the last several years. The most puzzling is the rise in the positron fraction above ~10 GeV over the predictions of the propagation models assuming pure secondary production. The accuracy of the antiproton production cross section is critical for astrophysical applications and searches for new physics since antiprotons in CRs seem to hold the keys to many puzzles including the origin of those excess positrons. However, model calculations of antiproton production in CR interactions with interstellar gas are often employing parameterizations that are out of date or are using outdated physical concepts. That may lead to an incorrect interpretation of antiproton data which could have broad consequences for other areas of astrophysics. In this work, we calculate antiproton production in pp-, pA-, and AA-interactions using EPOS-LHC and QGSJET-II-04, two of the most advanced Monte Carlo (MC) generators tuned to numerous accelerator data including those from the Large Hadron Collider (LHC). We show that the antiproton yields obtained with these MC generators differ by up to an order of magnitude from yields of parameterizations commonly used in astrophysics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا