ترغب بنشر مسار تعليمي؟ اضغط هنا

New calculation of antiproton production by cosmic ray protons and nuclei

120   0   0.0 ( 0 )
 نشر من قبل Igor Moskalenko
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A dramatic increase in the accuracy and statistics of space-borne cosmic ray (CR) measurements has yielded several breakthroughs over the last several years. The most puzzling is the rise in the positron fraction above ~10 GeV over the predictions of the propagation models assuming pure secondary production. The accuracy of the antiproton production cross section is critical for astrophysical applications and searches for new physics since antiprotons in CRs seem to hold the keys to many puzzles including the origin of those excess positrons. However, model calculations of antiproton production in CR interactions with interstellar gas are often employing parameterizations that are out of date or are using outdated physical concepts. That may lead to an incorrect interpretation of antiproton data which could have broad consequences for other areas of astrophysics. In this work, we calculate antiproton production in pp-, pA-, and AA-interactions using EPOS-LHC and QGSJET-II-04, two of the most advanced Monte Carlo (MC) generators tuned to numerous accelerator data including those from the Large Hadron Collider (LHC). We show that the antiproton yields obtained with these MC generators differ by up to an order of magnitude from yields of parameterizations commonly used in astrophysics.



قيم البحث

اقرأ أيضاً

126 - Julien Lavalle 2011
Some direct detection experiments have recently collected excess events that could be interpreted as a dark matter (DM) signal, pointing to particles in the $sim$10 GeV mass range. We show that scenarios in which DM can self-annihilate with significa nt couplings to quarks are likely excluded by the cosmic-ray (CR) antiproton data, provided the annihilation is S-wave dominated when DM decouples in the early universe. These limits apply to most of supersymmetric candidates, eg in the minimal supersymmetric standard model (MSSM) and in the next-to-MSSM (NMSSM), and more generally to any thermal DM particle with hadronizing annihilation final states.
The energy spectrum of cosmic Hydrogen and Helium nuclei has been measured, below the so-called knee, by using a hybrid experiment with a wide field-of-view Cherenkov telescope and the Resistive Plate Chamber (RPC) array of the ARGO-YBJ experiment at 4300 m above sea level. The Hydrogen and Helium nuclei have been well separated from other cosmic ray components by using a multi-parameter technique. A highly uniform energy resolution of about 25% is achieved throughout the whole energy range (100 TeV - 700 TeV). The observed energy spectrum is compatible with a single power law with index gamma=-2.63+/-0.06.
296 - Jia-Shu Niu , Hui-Fang Xue 2019
In this work, we considered 2 schemes (a high-rigidity break in primary source injections and a high-rigidity break in diffusion coefficient) to reproduce the newly released AMS-02 nuclei spectra (He, C, N, O, Li, Be, and B) when the rigidity larger than 50 GV. The fitting results show that current data set favors a high-rigidity break at $sim 325 mathrm{GV}$ in diffusion coefficient rather than a break at $sim 365 mathrm{GV}$ in primary source injections. Meanwhile, the fitted values of the factors to rescale the cosmic-ray (CR) flux of secondary species/components after propagation show us that the secondary flux are underestimated in current propagation model. It implies that we might locate in a slow diffusion zone, in which the CRs propagate with a small value of diffusion coefficient compared with the averaged value in the galaxy. Another hint from the fitting results show that extra secondary CR nuclei injection may be needed in current data set. All these new hints should be paid more attention in future research.
Theoretical predictions for the cosmic antiproton spectrum currently fall short of the corresponding experimental level of accuracy. Among the main sources of uncertainty are the antiproton production cross sections in cosmic ray inelastic interactio ns. We analyse existing data on antiproton production in $pp$ scattering, including for the first time the measurements performed by the NA49 Collaboration. We compute the antiproton spectrum finding that in the energy range where data are available (antiproton energies of about 4-550 GeV) different approaches lead to almost equivalent results, with an uncertainty of 10-20%. Extrapolations outside this region lead to different estimates, with the uncertainties reaching the 50% level around $1$ TeV, degrading the diagnostic power of the antiproton channel at those energies. We also comment on the uncertainties in the antiproton production source term coming from nuclei heavier than protons and from neutrons produced in $pp$ scatterings, and point out the need for dedicated experimental campaigns for all processes involving antiproton production in collisions of light nuclei.
The transport of charged energetic particles in the presence of strong intermittent heliospheric turbulence is computationally analyzed based on known properties of the interplanetary magnetic field and solar wind plasma at 1 Astronomical Unit (AU). The turbulence is assumed to be static, composite, and quasi-three-dimensional with a varying energy distribution between a one-dimensional Alfvenic (slab) and a structured two-dimensional component. The spatial fluctuations of the turbulent magnetic field are modeled either as homogeneous with a Gaussian probability distribution function (PDF), or as intermittent on large and small scales with a q-Gaussian PDF. Simulations showed that energetic particle diffusion coefficients both parallel and perpendicular to the background magnetic field are significantly affected by intermittency in the turbulence. This effect is especially strong for parallel transport where for large-scale intermittency results show an extended phase of subdiffusive parallel transport during which cross-field transport diffusion dominates. The effects of intermittency are found to depend on particle rigidity and the fraction of slab energy in the turbulence, yielding a perpendicular to parallel mean free path ratio close to 1 for large-scale intermittency. Investigation of higher order transport moments (kurtosis) indicates that non-Gaussian statistical properties of the intermittent turbulent magnetic field are present in the parallel transport, especially for low rigidity particles at all times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا