ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of Ne Emission Line of Very Luminous Soft X-ray Transient MAXI J0158$-$744

60   0   0.0 ( 0 )
 نشر من قبل Yukari Ohtani
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the mechanism to reproduce notable spectral features at the ignition phase of nova explosion observed for a super-Eddington X-ray transient source MAXI J0158$-$744 in the Small Magellanic Cloud. These are a strong Ne IX emission line at 0.92 keV with a large equivalent width of $0.32^{+0.21}_{-0.11}$ keV and the absence of Ne X line at 1.02 keV. In this paper, we calculate the radiative transfer using a Monte Carlo code, taking into account the line blanketing effect due to transitions of N, O, Ne, Mg and Al ions in an accelerating wind emanating from a white dwarf with a structure based on a spherically symmetric stationary model. We found that the strong Ne IX line can be reproduced if the mass fraction of Ne is enhanced to $10^{-3}$ or more and that of O is reduced to $sim5times10^{-9}$ or less and that the absence of other lines including Ne X ions at higher energies can be also reproduced by the line blanketing effect. This enhancement of the Ne mass fraction indicates that the ejecta are enriched by Ne dredged up from the surface of the white dwarf composed of O, Ne, and Mg rather than C and O, as already pointed out in the previous work. We argue that the CNO cycle driving this nova explosion converted most of C and O into N and thus reduced the O mass fraction.

قيم البحث

اقرأ أيضاً

86 - M. Morii , H. Tomida , M. Kimura 2013
We present the observation of an extraordinary luminous soft X-ray transient, MAXI J0158-744, by the Monitor of All-sky X-ray Image (MAXI) on 2011 November 11. This transient is characterized by a soft X-ray spectrum, a short duration (1.3 x 10^3 s < Delta T_d < 1.10 x 10^4 s), a very rapid rise (< 5.5 x 10^3 s), and a huge peak luminosity of 2 x 10^40 erg s^-1 in 0.7-7.0 keV band. With Swift observations and optical spectroscopy from the Small and Moderate Aperture Research Telescope System (SMARTS), we confirmed that the transient is a nova explosion, on a white dwarf in a binary with a Be star, located near the Small Magellanic Cloud. An extremely early turn-on of the super-soft X-ray source (SSS) phase (< 0.44 d), the short SSS phase duration of about one month, and a 0.92 keV neon emission line found in the third MAXI scan, 1296 s after the first detection, suggest that the explosion involves a small amount of ejecta and is produced on an unusually massive O-Ne white dwarf close to, or possibly over, the Chandrasekhar limit. We propose that the huge luminosity detected with MAXI was due to the fireball phase, a direct manifestation of the ignition of the thermonuclear runaway process in a nova explosion.
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., whic h are expected to be directly detected for the first time in late 2010s by the next generation gravitational telescopes such as Advanced LIGO and KAGRA. The most distinguishing characteristics of WF-MAXI are a wide energy range from 0.7 keV to 1 MeV and a large field of view (~25 % of the entire sky), which are realized by two main instruments: (i) Soft X-ray Large Solid Angle Camera (SLC) which consists of four pairs of crisscross coded aperture cameras using CCDs as one-dimensional fast-readout detectors covering 0.7 - 12 keV and (ii) Hard X-ray Monitor (HXM) which is a multi-channel array of crystal scintillators coupled with avalanche photo-diodes covering 20 keV - 1 MeV.
Phase-resolved spectroscopy of the newly discovered X-ray transient MAXI J0556-332 has revealed the presence of narrow emission lines in the Bowen region that most likely arise on the surface of the mass donor star in this low mass X-ray binary. A pe riod search of the radial velocities of these lines provides two candidate orbital periods (16.43+/-0.12 and 9.754+/-0.048 hrs), which differ from any potential X-ray periods reported. Assuming that MAXI J0556-332 is a relatively high inclination system that harbors a precessing accretion disk in order to explain its X-ray properties, it is only possible to obtain a consistent set of system parameters for the longer period. These assumptions imply a mass ratio of q~0.45, a radial velocity semi-amplitude of the secondary of K_2~190 km/s and a compact object mass of the order of the canonical neutron star mass, making a black hole nature for MAXI J0556-332 unlikely. We also report the presence of strong N III emission lines in the spectrum, thereby inferring a high N/O abundance. Finally we note that the strength of all emission lines shows a continuing decay over the ~1 month of our observations.
It is now widely accepted that most ultraluminous X-ray sources (ULXs) are binary systems whose large (above $10^{39}$ erg s$^{-1}$) apparent luminosities are explained by super-Eddington accretion onto a stellar-mass compact object. Many of the ULXs , especially those containing magnetized neutron stars, are highly variable; some exhibit transient behaviour. Large luminosities might imply large accretion discs that could be therefore prone to the thermal-viscous instability known to drive outbursts of dwarf novae and low-mass X-ray binary transient sources. The aim of this paper is to extend and generalize the X-ray transient disc-instability model to the case of large (outer radius larger than $10^{12}$ cm) accretion discs and apply it to the description of systems with super-Eddington accretion rates at outburst and, in some cases, super-Eddington mass transfer rates. We have used our disc-instability-model code to calculate the time evolution of the accretion disc and the outburst properties. We show that, provided that self-irradiation of the accretion disc is efficient even when the accretion rate exceeds the Eddington value, possibly due to scattering back of the X-ray flux emitted by the central parts of the disc on the outer portions of the disc, heating fronts can reach the discs outer edge generating high accretion rates. We also provide analytical approximations for the observable properties of the outbursts. We have reproduced successfully the observed properties of galactic transients with large discs, such as V404 Cyg, as well as some ULXs such as M51 XT-1. Our model can reproduce the peak luminosity and decay time of ESO 243-39 HLX-1 outbursts if the accretor is a neutron star. Observational tests of our predicted relations between the outburst duration and decay time with peak luminosity would be most welcome.
120 - c{C}.K. Donmez 2019
We probe the properties of the transient X-ray pulsar MAXI J1409$-$619 through textit{RXTE} and textit{Swift} follow up observations of the outburst in 2010. We are able to phase connect the pulse arrival times for the 25 days episode during the outb urst. We suggest that either an orbital model (with $P_{{rm{orb}}} simeq 14.7(4)$ days) or a noise process due to random torque fluctuations (with $S_r approx 1.3 times 10^{-18}$ Hz$^2$ s$^{-2}$ Hz$^{-1}$) is plausible to describe the residuals of the timing solution. The frequency derivatives indicate a positive torque-luminosity correlation, that implies a temporary accretion disc formation during the outburst. We also discover several quasi-periodic oscillations (QPOs) in company with their harmonics whose centroid frequencies decrease as the source flux decays. The variation of pulsed fraction and spectral power law index of the source with X-ray flux is interpreted as the sign of transition from a critical to a sub-critical accretion regime at the critical luminosity within the range of $6times 10^{37}$ erg s$^{-1}$ to $1.2times 10^{38}$ ergs s$^{-1}$. Using pulse-phase-resolved spectroscopy, we show that the phases with higher flux tend to have lower photon indices, indicating that the polar regions produce spectrally harder emission.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا