ترغب بنشر مسار تعليمي؟ اضغط هنا

CeFePO: f-d hybridization and quenching of superconductivity

84   0   0.0 ( 0 )
 نشر من قبل Anton Jesche
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectroscopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.

قيم البحث

اقرأ أيضاً

107 - Emilian M. Nica , Qimiao Si 2019
Recent experiments in multiband Fe-based and heavy-fermion superconductors have challenged the long-held dichotomy between simple $s$- and $d$-wave spin-singlet pairing states. Here, we advance several time-reversal-invariant irreducible pairings tha t go beyond the standard singlet functions through a matrix structure in the band/orbital space, and elucidate their naturalness in multiband systems. We consider the $stau_{3}$ multiorbital superconducting state for Fe-chalcogenide superconductors. This state, corresponding to a $d+d$ intra- and inter-band pairing, is shown to contrast with the more familiar $d +text{i}d$ state in a way analogous to how the B- triplet pairing phase of enhe superfluid differs from its A- phase counterpart. In addition, we construct an analogue of the $stau_{3}$ pairing for the heavy-fermion superconductor CeCu$_{2}$Si$_{2}$, using degrees-of-freedom that incorporate spin-orbit coupling. Our results lead to the proposition that $d$-wave superconductors in correlated multiband systems will generically have a fully-gapped Fermi surface when they are examined at sufficiently low energies.
Superconductivity (SC) and charge-density wave (CDW) are two contrasting yet relevant collective electronic states which have received sustained interest for decades. Here we report that, in a layered europium bismuth sulfofluoride, EuBiS$_2$F, a CDW -like transition occurs at 280 K, below which SC emerges at 0.3 K, without any extrinsic doping. The Eu ions were found to exhibit an anomalously temperature-independent mixed valence of about +2.2, associated with the formation of CDW. The mixed valence of Eu gives rise to self electron doping into the conduction bands mainly consisting of the in-plane Bi-6$p$ states, which in turn brings about the CDW and SC. In particular, the electronic specific-heat coefficient is enhanced by ~ 50 times, owing to the significant hybridizations between Eu-4$f$ and Bi-6$p$ electrons, as verified by band-structure calculations. Thus, EuBiS$_2$F manifests itself as an unprecedented material that simultaneously accommodates SC, CDW and $f$-electron valence instability.
The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explo re the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.
The study of multi-band superconductivity is relevant for a variety of systems, from ultra cold atoms with population imbalance to particle physics, and condensed matter. As a consequence, this problem has been widely investigated bringing to light m any new and interesting phenomena. In this work we point out and explore a correspondence between a two-band metal with a $k$-dependent hybridization and a uniformly polarized fermionic system in the presence of spin-orbit coupling (SOC). We study the ground state phase diagram of the metal in the presence of an attractive interaction. We find remarkable superconducting properties whenever hybridization mixes orbitals of different parities in neighboring sites. We show that this mechanism enhances superconductivity and drives the crossover from weak to strong coupling in analogy with SOC in cold atoms. We obtain the quantum phase transitions between the normal and superfluid states, as the intensity of different parameters characterizing the metal are varied, including Lifshitz transitions, with no symmetry breaking, associated with the appearance of soft modes in the Fermi surface.
134 - J.P.Hague 2007
I examine electron-phonon mediated superconductivity in the intermediate coupling and phonon frequency regime of the quasi-2D Holstein model. I use an extended Migdal-Eliashberg theory which includes vertex corrections and spatial fluctuations. I fin d a d-wave superconducting state that is unique close to half-filling. The order parameter undergoes a transition to s-wave superconductivity on increasing filling. I explain how the inclusion of both vertex corrections and spatial fluctuations is essential for the prediction of a d-wave order parameter. I then discuss the effects of a large Coulomb pseudopotential on the superconductivity (such as is found in contemporary superconducting materials like the cuprates), which results in the destruction of the s-wave states, while leaving the d-wave states unmodified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا