ترغب بنشر مسار تعليمي؟ اضغط هنا

Position resolution and efficiency measurements with large scale Thin Gap Chambers for the super LHC

60   0   0.0 ( 0 )
 نشر من قبل Erez Etzion
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

New developments in Thin Gap Chambers (TGC) detectors to provide fast trigger and high precision muon tracking under sLHC conditions are presented. The modified detectors are shown to stand a high total irradiation dose equivalent to 6 Coulomb/cm of wire, without showing any deterioration in their performance. Two large (1.2 x 0.8 m^2) prototypes containing four gaps, each gap providing pad, strips and wires readout, with a total thickness of 50 mm, have been constructed. Their local spatial resolution has been measured in a 100 GeV/c muon test beam at CERN. At perpendicular incidence angle, single gap position resolution better than 60 microns has been obtained. For incidence angle of 20 degrees resolution of less than 100 micron was achieved. TGC prototypes were also tested under a flux of 10^5 Hz/cm^2 of 5.5-6.5 MeV neutrons, showing a high efficiency for cosmic muons detection.

قيم البحث

اقرأ أيضاً

271 - M. Deile , J. Dubbert , S. Horvat 2016
The resolution and efficiency of a precision drift-tube chamber for the ATLAS muon spectrometer with final read-out electronics was tested at the Gamma Irradiation Facility at CERN in a 100 GeV muon beam and at photon irradiation rates of up to 990 H z/square cm which corresponds to twice the highest background rate expected in ATLAS. A silicon strip detector telescope was used as external reference in the beam. The pulse-height measurement of the read-out electronics was used to perform time-slewing corrections which lead to an improvement of the average drift-tube resolution from 104 microns to 82 microns without irradiation and from 128 microns to 108 microns at the maximum expected rate. The measured drift-tube efficiency agrees with the expectation from the dead time of the read-out electronics up to the maximum expected rate.
119 - P. Gadow , O. Kortner , S. Kortner 2015
Highly selective first-level triggers are essential to exploit the full physics potential of the ATLAS experiment at High-Luminosity LHC (HL-LHC). The concept for a new muon trigger stage using the precision monitored drift tube (MDT) chambers to sig nificantly improve the selectivity of the first-level muon trigger is presented. It is based on fast track reconstruction in all three layers of the existing MDT chambers, made possible by an extension of the first-level trigger latency to six microseconds and a new MDT read-out electronics required for the higher overall trigger rates at the HL-LHC. Data from $pp$-collisions at $sqrt{s} = 8,mathrm{TeV}$ is used to study the minimal muon transverse momentum resolution that can be obtained using the MDT precision chambers, and to estimate the resolution and efficiency of the MDT-based trigger. A resolution of better than $4.1%$ is found in all sectors under study. With this resolution, a first-level trigger with a threshold of $18,mathrm{GeV}$ becomes fully efficient for muons with a transverse momentum above $24,mathrm{GeV}$ in the barrel, and above $20,mathrm{GeV}$ in the end-cap region.
86 - B. Aimard , Ch. Alt , J. Asaadi 2018
A 10 kilo-tonne dual-phase liquid argon TPC is one of the detector options considered for the Deep Underground Neutrino Experiment (DUNE). The detector technology relies on amplification of the ionisation charge in ultra-pure argon vapour and oers se veral advantages compared to the traditional single-phase liquid argon TPCs. A 4.2 tonne dual-phase liquid argon TPC prototype, the largest of its kind, with an active volume of 3x1x1 $m^3$ has been constructed and operated at CERN. In this paper we describe in detail the experimental setup and detector components as well as report on the operation experience. We also present the first results on the achieved charge amplification, prompt scintillation and electroluminescence detection, and purity of the liquid argon from analyses of a collected sample of cosmic ray muons.
353 - N. Amram 2011
The ATLAS Muon Spectrometer is designed to measure the momentum of muons with a resolution of dp/p = 3% and 10% at 100 GeV and 1 TeV momentum respectively. For this task, the spectrometer employs 355,000 Monitored Drift Tubes (MDTs) arrayed in 1200 C hambers. Calibration (RT) functions convert drift time measurements into tube-centered impact parameters for track segment reconstruction. RT functions depend on MDT environmental parameters and so must be appropriately calibrated for local chamber conditions. We report on the creation and application of a gas monitor system based calibration program for muon track reconstruction in the LHC startup phase.
Using truth-level Monte Carlo simulations of particle interactions in a large volume of liquid argon, we demonstrate physics capabilities enabled by reconstruction of topologically compact and isolated low-energy features, or `blips, in large liquid argon time projection chamber (LArTPC) events. These features are mostly produced by electron products of photon interactions depositing ionization energy. The blip identification capability of the LArTPC is enabled by its unique combination of size, position resolution precision, and low energy thresholds. We show that consideration of reconstructed blips in LArTPC physics analyses can result in substantial improvements in calorimetry for neutrino and new physics interactions and for final-state particles ranging in energy from the MeV to the GeV scale. Blip activity analysis is also shown to enable discrimination between interaction channels and final-state particle types. In addition to demonstrating these gains in calorimetry and discrimination, some limitations of blip reconstruction capabilities and physics outcomes are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا