ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of enhanced exchange bias behavior in NiCoMnSb Heusler alloys

150   0   0.0 ( 0 )
 نشر من قبل Ajaya Nayak
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the observation of large exchange bias in Ni50-xCoxMn38Sb12 Heusler alloys with x=0, 2, 3, 4, 5, which is attributed to the coexistence of ferromagnetic and antiferromagnetic phases in the martensitic phase. The phase coexistence is possibly due to the supercooling of the high temperature ferromagnetic phase and the predominant antiferromagnetic component in the martensitic phase. The presence of exchange bias is well supported by the observation of training effect. The exchange bias field increases with Co concentration. The maximum value of 480 Oe at T=3K is observed in x=5 after field cooling in 50 kOe, which is almost double the highest value reported so far in any Heusler alloy system. Increase in the antiferromagnetic coupling after Co substitution is found to be responsible for the increase in the exchange bias.



قيم البحث

اقرأ أيضاً

The discovery of materials with improved functionality can be accelerated by rational material design. Heusler compounds with tunable magnetic sublattices allow to implement this concept to achieve novel magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a similarly large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. We demonstrate the applicability of our design concept on a second material, Mn-Fe-Ga, with a magnetic transition above room temperature, exemplifying the universality of the concept and the feasibility of room-temperature applications. Our study points to a new direction for novel magneto-electronic devices. At the same time it suggests a new route for realizing rare-earth free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.
87 - J. Li , X. Wang , J.J. Deng 2019
The mechanism of spontaneous exchange bias (SEB) and the dominant factor of its blocking temperature are still unclear in Heusler alloys. Here, the related investigations are performed in Mn2Ni1.5Al0.5 Heusler alloys with SEB. The results of both mag netic measurements and first-principles calculations confirmed that spin frustrated and unfrustrated antiferromagnetic (AFM) states coexist there and they have different magnetic anisotropies, which are essential for SEB. Based on a series of measurement strategies, we demonstrate that the frustrated AFM state undergoes a first-order magnetic transition to the superferromagnet (SFM) state with the help of an external magnetic field, and SFM is retained due to the first-order property of the magnetic transition. SEB originates from the interface coupling of multiple sublattices between the unfrustrated AFM state and SFM state. By analyzing the Arrott plot using the Landau model, we found that the internal field of the system dominates the blocking temperature of SEB, which paves the way for improving the blocking temperature.
Density-functional studies of the electronic structures and exchange interaction parameters have been performed for a series of ferromagnetic full Heusler alloys of general formula Co$_2$MnZ (Z = Ga, Si, Ge, Sn), Rh$_2$MnZ (Z = Ge, Sn, Pb), Ni$_2$MnS n, Cu$_2$MnSn and Pd$_2$MnSn, and the connection between the electronic spectra and the magnetic interactions have been studied. Different mechanisms contributing to the exchange coupling are revealed. The band dependence of the exchange parameters, their dependence on volume and valence electron concentration have been thoroughly analyzed within the Green function technique.
The ground-state magnetic properties of hexagonal equiatomic alloy of nominal composition Mn_{0.8}Fe_{0.2}NiGe were investigated through dc magnetization and heat capacity measurements. The alloy undergoes first order martensitic transition below 140 K with simultaneous development of long range ferromagnetic ordering from the high temperature paramagnetic phase. The undoped compound MnNiGe has an antiferromagnetic ground state and it shows martensitic like structural instability well above room temperature. Fe doping at the Mn site not only brings down the martensitic transition temperature, it also induces ferromagnetism in the sample. Our study brings out two important aspects regarding the sample, namley (i) the observation of exchange bias at low temperature, and (ii) spin glass like ground state which prevails below the martensitic and magnetic transition points. In addition to the observed usual relaxation behavior the spin glass state is confirmed by zero field cooled memory experiment, thereby indicating cooperative freezing of spin and/or spin clusters rather than uncorrelated dynamics of superparamagnetic like spin clusters. We believe that doping disorder can give rise to some islands of antiferromagnetic clusters in the otherwise ferromagnetic background which can produce interfacial frustration and exchange pinning responsible for spin glass and exchange bias effect. A comparison is made with doped rare-earth manganites where similar phase separation can lead to glassy ground state.
179 - M. Patra , K. De , S. Majumdar 2007
The exchange bias (EB) in LaMn_{0.7}Fe_{0.3}O_3 is observed by the negative shift and training effect of the hysteresis loops, while the sample was cooled in external magnetic field. The analysis of cooling field dependence of EB gives the size of th e ferromagnetic (FM) cluster ~ 25 Angstrom, where the magnetic anisotropy of FM cluster is found two order of magnitude higher than the FM bulk manganites. We propose that the nanoscale FM clusters are embedded in the glassy magnetic host with EB at the FM/glassy magnetic interface.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا