ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetotransport in two-dimensional electron gases on cylindrical surfaces

114   0   0.0 ( 0 )
 نشر من قبل Alexander Vorob'ev
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fabricated high-mobility, two-dimensional electron gases in a GaAs quantum well on cylindrical surfaces, which allows to investigate the magnetotransport behavior under varying magnetic fields along the current path. A strong asymmetry in the quantum Hall effect appears for measurements on both sides of the conductive path. We determined the strain at the position of the quantum well. We observe ballistic transport in 8-micrometers-wide collimating structures.

قيم البحث

اقرأ أيضاً

149 - M.Langenbuch , M.Suhrke , 2003
We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechani cal Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.
We compute the single-particle states of a two-dimensional electron gas confined to the surface of a cylinder immersed in a magnetic field. The envelope-function equation has been solved exactly for both an homogeneous and a periodically modulated ma gnetic field perpendicular to the cylinder axis. The nature and energy dispersion of the quantum states reflects the interplay between different lengthscales, namely, the cylinder diameter, the magnetic length, and, possibly, the wavelength of the field modulation. We show that a transverse homogeneous magnetic field drives carrier states from a quasi-2D (cylindrical) regime to a quasi-1D regime where carriers form channels along the cylinder surface. Furthermore, a magnetic field which is periodically modulated along the cylinder axis may confine the carriers to tunnel-coupled stripes, rings or dots on the cylinder surface, depending on the ratio between the the field periodicity and the cylinder radius. Results in different regimes are traced to either incipient Landau levels formation or Aharonov-Bohm behaviour.
We demonstrate tunable transverse rectification in a density-modulated two-dimensional electron gas (2DEG). The density modulation is induced by two surface gates, running in parallel along a narrow stripe of 2DEG. A transverse voltage in the directi on of the density modulation is observed, i.e. perpendicular to the applied source-drain voltage. The polarity of the transverse voltage is independent of the polarity of the source-drain voltage, demonstrating rectification in the device. We find that the transverse voltage $U_{y}$ depends quadratically on the applied source-drain voltage and non-monotonically on the density modulation. The experimental results are discussed in the framework of a diffusion thermopower model.
We report on a systematic investigation of the dominant scattering mechanism in shallow two-dimensional electron gases (2DEGs) formed in modulation-doped GaAs/Al_{x}Ga_{1-x}As heterostructures. The power-law exponent of the electron mobility versus d ensity, mu propto n^{alpha}, is extracted as a function of the 2DEGs depth. When shallower than 130 nm from the surface, the power-law exponent of the 2DEG, as well as the mobility, drops from alpha simeq 1.65 (130 nm deep) to alpha simeq 1.3 (60 nm deep). Our results for shallow 2DEGs are consistent with theoretical expectations for scattering by remote dopants, in contrast to the mobility-limiting background charged impurities of deeper heterostructures.
We present measurements of the energy relaxation length scale $ell$ in two-dimensional electron gases (2DEGs). A temperature gradient is established in the 2DEG by means of a heating current, and then the elevated electron temperature $T_e$ is estima ted by measuring the resultant thermovoltage signal across a pair of deferentially biased bar-gates. We adapt a model by Rojek and K{o}nig [Phys. Rev. B textbf{90}, 115403 (2014)] to analyse the thermovoltage signal and as a result extract $ell$, $T_e$, and the power-law exponent $alpha_i$ for inelastic scattering events in the 2DEG. We show that in high-mobility 2DEGs, $ell$ can attain macroscopic values of several hundred microns, but decreases rapidly as the carrier density $n$ is decreased. Our work demonstrates a versatile low-temperature thermometry scheme, and the results provide important insights into heat transport mechanisms in low-dimensional systems and nanostructures. These insights will be vital for practical design considerations of future nanoelectronic circuits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا