ترغب بنشر مسار تعليمي؟ اضغط هنا

Collective excitations of superfluid Fermi gases near the transition temperature

232   0   0.0 ( 0 )
 نشر من قبل Serghei Klimin N
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. N. Klimin




اسأل ChatGPT حول البحث

Studying the collective pairing phenomena in a two-component Fermi gas, we predict the appearance near the transition temperature $T_c$ of a well-resolved collective mode of quadratic dispersion. The mode is visible both above and below $T_c$ in the systems response to a driving pairing field. When approaching $T_c$ from below, the phononic and pair-breaking branches, characteristic of the zero temperature behavior, reduce to a very low energy-momentum region when the pair correlation length reaches its critical divergent behavior $xi_{rm pair}propto|T_c-T|^{-1/2}$; elsewhere, they are replaced by the quadratically-dispersed pairing resonance, which thus acts as a precursor of the phase transition. In the strong-coupling and Bose-Einstein Condensate regime, this mode is a weakly-damped propagating mode associated to a Lorentzian resonance. Conversely, in the BCS limit it is a relaxation mode of pure imaginary eigenenergy. At large momenta, the resonance disappears when it is reabsorbed by the lower-edge of the pairing continuum. At intermediate temperatures between 0 and $T_c$, we unify the newly found collective phenomena near $T_c$ with the phononic and pair-breaking branches predicted from previous studies, and we exhaustively classify the roots of the analytically continued dispersion equation, and show that they provided a very good summary of the pair spectral functions.



قيم البحث

اقرأ أيضاً

400 - S. N. Klimin 2018
We study the phononic collective modes of the pairing field $Delta$ and their corresponding signature in both the order-parameter and density response functions for a superfluid Fermi gas at all temperatures below $T_c$ in the collisionless regime. T he spectra of collective modes are calculated within the Gaussian Pair Fluctuation approximation. We deal with the coupling of these modes to the fermionic continuum of quasiparticle-quasihole excitations by performing a non-perturbative analytic continuation of the pairing field propagator. At low temperature, we recover the known exponential temperature dependence of the damping rate and velocity shift of the Anderson-Bogoliubov branch. In the vicinity of $T_c$, we find analytically a weakly-damped collective mode whose velocity vanishes with a critical exponent of $1/2$, and whose quality factor diverges logarithmically with $T_c-T$, thereby clarifying an existing debate in the literature (Andrianov et al. Th. Math. Phys. 28, 829, Ohashi et al. J. Phys. Jap. 66, 2437). A transition between these two phononic branches is visible at intermediary temperatures, particularly in the BCS limit where the phase-phase response function displays two maxima.
The Anderson-Bogoliubov branch of collective excitations in a condensed Fermi gas is treated using the effective bosonic action of Gaussian pair fluctuations. The spectra of collective excitations are treated for finite temperature and momentum throu ghout the BCS-BEC crossover. The obtained spectra explain, both qualitatively and quantitatively, recent experimental results on Goldstone modes in atomic Fermi superfluids.
We demonstrate the existence of a collective excitation branch in the pair-breaking continuum of superfluid Fermi gases and BCS superconductors. At zero temperature, we analytically continue the equation on the collective mode energy in Andersons Ran dom Phase Approximation or Gaussian fluctuations through its branch cut associated with the continuum, and obtain the full complex dispersion relation, including in the strong coupling regime. The branch exists as long as the chemical potential $mu$ is positive and the wave number below $sqrt{2mmu}/hbar$ (with m the fermion mass). In the long wavelength limit, the branch varies quadratically with the wave number, with a complex effective mass that we compute analytically for an arbitrary interaction strength.
We study the propagation of dispersive waves in superfluid Fermi gases in the BEC-BCS crossover. Unlike in other superfluid systems, where dispersive waves have already been studied and observed, Fermi gases can exhibit a subsonic dispersion relation for which the dispersive wave pattern appears at the tail of the wave front. We show that this property can be used to distinguish between a subsonic and a supersonic dispersion relation at unitarity.
The Leggett collective excitations for a two-band Fermi gas with s-wave pairing and Josephson interband coupling in the BCS-BEC crossover at finite temperatures are investigated within the Gaussian pair fluctuation approach. Eigenfrequencies and damp ing factors for Leggett modes are determined in a nonperturbative way, using the analytic continuation of the fluctuation propagator through a branch cut in the complex frequency plane, as in Phys. Rev. Lett. 122, 093403 (2019). The treatment is performed beyond the low-energy expansion, which is necessary when the collective excitation energy reaches the pair-breaking continuum edge. The results are applied in particular to cold atomic gases at the orbital Feshbach resonance and in a regime far from BEC, which can be relevant for future experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا