ﻻ يوجد ملخص باللغة العربية
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step toward a more general understanding of chaotic scattering in higher dimensions. Despite of the strong restrictions it breaks the essential simplicity implicit in any two-dimensional time-independent scattering problem. Introducing the third degree of freedom by breaking a continuous symmetry, we first explore the topological structure of the homoclinic/heteroclinic tangle and the structures in the scattering functions. Then we work out implications of these structures for the doubly differential cross section. The most prominent structures in the cross section are rainbow singularities. They form a fractal pattern which reflects the fractal structure of the chaotic invariant set. This allows to determine structures in the cross section from the invariant set and conversely, to obtain information about the topology of the invariant set from the cross section. The latter is a contribution to the inverse scattering problem for chaotic systems.
Exact analytical expressions for the cross-section correlation functions of chaotic scattering sys- tems have hitherto been derived only under special conditions. The objective of the present article is to provide expressions that are applicable beyo
We consider a three-dimensional chaotic system consisting of the suspension of Arnolds cat map coupled with a clock via a weak dissipative interaction. We show that the coupled system displays a synchronization phenomenon, in the sense that the relat
We shall use symmetry breaking as a tool to attack the problem of identifying the topology of chaotic scatteruing with more then two degrees of freedom. specifically we discuss the structure of the homoclinic/heteroclinic tangle and the connection be
Quantized, compact graphs were shown to be excellent paradigms for quantum chaos in bounded systems. Connecting them with leads to infinity we show that they display all the features which characterize scattering systems with an underlying classical
The rigorous analytical calculation of the diffusion coefficient is performed for the chaotic motion of a particle in a set of longitudinal waves with random phases and large amplitudes (~ A). A first step proves the existence of a quasilinear diffus