ﻻ يوجد ملخص باللغة العربية
We consider a three-dimensional chaotic system consisting of the suspension of Arnolds cat map coupled with a clock via a weak dissipative interaction. We show that the coupled system displays a synchronization phenomenon, in the sense that the relative phase between the suspension flow and the clock locks to a special value, thus making the motion fall onto a lower dimensional attractor. More specifically, we construct the attractive invariant manifold, of dimension smaller than three, using a convergent perturbative expansion. Moreover, we compute via convergent series the Lyapunov exponents, including notably the central one. The result generalizes a previous construction of the attractive invariant manifold in a similar but simpler model. The main novelty of the current construction relies in the computation of the Lyapunov spectrum, which consists of non-trivial analytic exponents. Some conjectures about a possible smoothening transition of the attractor as the coupling is increased are also discussed.
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step toward a more general understanding of chaotic scattering in higher dimensions. Despite of the strong rest
We study the spectral statistics of the Dirac operator on a rose-shaped graph---a graph with a single vertex and all bonds connected at both ends to the vertex. We formulate a secular equation that generically determines the eigenvalues of the Dirac
We consider resonant tunneling between disorder localized states in a potential energy displaying perfect correlations over large distances. The phenomenon described here may be of relevance to models exhibiting many-body localization. Furthermore, i
We predict synchronization of the chaotic dynamics of two atomic ensembles coupled to a heavily damped optical cavity mode. The atoms are dissipated collectively through this mode and pumped incoherently to achieve a macroscopic population of the cav
In this paper, we construct a Spectrum Generating Algebra (SGA) for a quantum system with purely continuous spectrum: the quantum free particle in a Lobachevski space with constant negative curvature. The SGA contains the geometrical symmetry algebra