ﻻ يوجد ملخص باللغة العربية
Quantized, compact graphs were shown to be excellent paradigms for quantum chaos in bounded systems. Connecting them with leads to infinity we show that they display all the features which characterize scattering systems with an underlying classical chaotic dynamics. We derive exact expressions for the scattering matrix, and an exact trace formula for the density of resonances, in terms of classical orbits, analogous to the semiclassical theory of chaotic scattering. A statistical analysis of the cross sections and resonance parameters compares well with the predictions of Random Matrix Theory. Hence, this system is proposed as a convenient tool to study the generic behavior of chaotic scattering systems, and their semiclassical description.
Motivated by the desire to understand chaos in the $S$-matrix of string theory, we study tree level scattering amplitudes involving highly excited strings. While the amplitudes for scattering of light strings have been a hallmark of string theory sin
This article treats chaotic scattering with three degrees of freedom, where one of them is open and the other two are closed, as a first step toward a more general understanding of chaotic scattering in higher dimensions. Despite of the strong rest
We propose an entropy measure for the analysis of chaotic attractors through recurrence networks which are un-weighted and un-directed complex networks constructed from time series of dynamical systems using specific criteria. We show that the propos
By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantu
We predict synchronization of the chaotic dynamics of two atomic ensembles coupled to a heavily damped optical cavity mode. The atoms are dissipated collectively through this mode and pumped incoherently to achieve a macroscopic population of the cav