ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymmetric metal-insulator transition in disordered ferromagnetic films

177   0   0.0 ( 0 )
 نشر من قبل Arthur F. Hebard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental data and a theoretical interpretation on the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b approximately 2-10 nm. A large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L_phi < b in the range of sheet resistances considered, so that the effective dimension is d = 3. The observed approximate fractional temperature power law of the conductivity is ascribed to the scaling regime near the transition. The conductivity data as a function of temperature and disorder strength collapse on to two scaling curves for the metallic and insulating regimes. The best fit is obtained for a dynamical exponent z approximately 2.5 and a correlation length critical exponent u approximately 1.4 on the metallic side and a localization length exponent u approximately 0.8 on the insulating side.



قيم البحث

اقرأ أيضاً

131 - V. Janis , V. Pokorny 2014
We use the dynamical mean-field approximation to study singularities in the self-energy and a two-particle irreducible vertex induced by the metal-insulator transition of the disordered Falicov-Kimball model. We set general conditions for the existen ce of a critical metal-insulator transition caused by a divergence of the imaginary part of the self-energy. We calculate explicitly the critical behavior of the self-energy for the symmetric and asymmetric disorder distributions. We demonstrate that the metal-insulator transition is preceded by a pole in a two-particle irreducible vertex. We show that unlike the singularity in the self-energy the divergence in the irreducible vertex does not lead to non-analyticities in measurable physical quantities. We reveal universal features of the critical metal-insulator transition that are transferable also to the Mott-Hubbard transition in the models of the local Fermi liquid.
The Metal-Insulator transition (MIT) in VO2 is characterized by the complex interplay among lattice, electronic and orbital degrees of freedom. In this contribution we investigated the strain-modulation of the orbital hierarchy and the influence over macroscopic properties of the metallic phase of VO2 such as Fermi Level (FL) population and metallicity, i.e., the material ability to screen an electric field, by means of temperature-dependent X-ray Absorption Near Edge Structure (XANES) and Resonant Photoemission spectroscopy (ResPES). We demonstrate that the MIT in strained VO2 is of the Filling Control type, hence it is generated by electron correlation effects. In addition, we show that the MIT in Nanostructured (NS) disordered VO2, where the structural phase transition is quenched, is driven by electron correlation. Therefore a fine tuning of the correlation could lead to a precise control and tuning of the transition features.
We have measured directly the thermal conductance between electrons and phonons in ultra-thin Hf and Ti films at millikelvin temperatures. The experimental data indicate that electron-phonon coupling in these films is significantly suppressed by diso rder. The electron cooling time $tau_epsilon$ follows the $T^{-4}$-dependence with a record-long value $tau_epsilon=25ms$ at $T=0.04K$. The hot-electron detectors of far-infrared radiation, fabricated from such films, are expected to have a very high sensitivity. The noise equivalent power of a detector with the area $1mum^2$ would be $(2-3)10^{-20}W/Hz^{1/2}$, which is two orders of magnitude smaller than that of the state-of-the-art bolometers.
We consider the many-body localization-delocalization transition for strongly interacting one- dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transiti ons at any finite temperature when varying the interaction strength. At weak interactions an increase in the interaction strength leads to insulator->fluid transition, and for large interactions one has a reentrance to the insulator regime.
Transport in ultrathin films of LaNiO3 evolves from a metallic to a strongly localized character as the films thickness is reduced and the sheet resistance reaches a value close to h/e2, the quantum of resistance in two dimensions. In the intermediat e regime, quantum corrections to the Drude low- temperature conductivity are observed; they are accurately described by weak localization theory. Remarkably, the negative magnetoresistance in this regime is isotropic, which points to magnetic scattering associated with the proximity of the system to either a spin glass state or the charge ordered antiferromagnetic state observed in other rare earth nickelates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا