ﻻ يوجد ملخص باللغة العربية
We have measured directly the thermal conductance between electrons and phonons in ultra-thin Hf and Ti films at millikelvin temperatures. The experimental data indicate that electron-phonon coupling in these films is significantly suppressed by disorder. The electron cooling time $tau_epsilon$ follows the $T^{-4}$-dependence with a record-long value $tau_epsilon=25ms$ at $T=0.04K$. The hot-electron detectors of far-infrared radiation, fabricated from such films, are expected to have a very high sensitivity. The noise equivalent power of a detector with the area $1mum^2$ would be $(2-3)10^{-20}W/Hz^{1/2}$, which is two orders of magnitude smaller than that of the state-of-the-art bolometers.
We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic interval
We investigate the basic charge and heat transport properties of charge neutral epigraphene at sub-kelvin temperatures, demonstrating nearly logarithmic dependence of electrical conductivity over more than two decades in temperature. Using graphenes
We present experimental data and a theoretical interpretation on the conductance near the metal-insulator transition in thin ferromagnetic Gd films of thickness b approximately 2-10 nm. A large phase relaxation rate caused by scattering of quasiparti
We examine the nature of the transitions between the normal and the superconducting branches of superconductor-graphene-superconductor Josephson junctions. We attribute the hysteresis between the switching (superconducting to normal) and retrapping (
We consider electron-phonon (textit{e-ph}) energy loss rate in 3D and 2D multi-component electron systems in semiconductors. We allow general asymmetry in the textit{e-ph} coupling constants (matrix elements), i.e., we allow that the coupling depends