ﻻ يوجد ملخص باللغة العربية
The paper describes an extension of the Liga algorithm for structure solution from atomic pair distribution function (PDF), to handle periodic crystal structures with multiple elements in the unit cell. The procedure is performed in 2 separate steps - at first the Liga algorithm is used to find unit cell sites consistent with pair distances extracted from the experimental PDF. In the second step the assignment of atom species over cell sites is solved by minimizing the overlap of their empirical atomic radii. The procedure has been demonstrated on synchrotron x-ray PDF data from 16 test samples. The structure solution was successful for 14 samples including cases with enlarged super cells. The algorithm success rate and the reasons for failed cases are discussed together with enhancements that should improve its convergence and usability.
Many crystalline materials show chemical short range order and relaxation of neighboring atoms. Local structural information can be obtained by analyzing the atomic pair distribution function (PDF) obtained from powder diffraction data. In this paper
A new approach is presented to obtain candidate structures from atomic pair distribution function (PDF) data in a highly automated way. It fetches, from web-based structural databases, all the structures meeting the experimenters search criteria and
We have experimentally elucidated the correlation between inverse and direct Edelstein Effects (EEs) at Bi2O3/Cu interface by means of spin absorption method using lateral spin valve structure. The conversion coefficient {lambda} for the inverse EE i
High resolution total and indium differential atomic pair distribution functions (PDFs) for In_(0.5)Ga_(0.5)As alloys have been obtained by high energy and anomalous x-ray diffraction experiments, respectively. The first peak in the total PDF is reso
The frequency distributions of sizes and fluxes of supra-arcade downflows (SADs) provide information about the process of their creation. For example, a fractal creation process may be expected to yield a power-law distribution of sizes and/or fluxes