ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of mean vector in elliptical models

142   0   0.0 ( 0 )
 نشر من قبل Mohammad Arashi
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English
 تأليف Mohammad Arashi




اسأل ChatGPT حول البحث

In this paper, we are basically discussing on a class of Baranchik type shrinkage estimators of the vector parameter in a location model, with errors belonging to a sub-class of elliptically contoured distributions. We derive conditions under Schwartz space in which the underlying class of shrinkage estimators outperforms the sample mean. Sufficient conditions on dominant class to outperform the usual James-Stein estimator are also established. It is nicely presented that the dominant properties of the class of estimators are robust truly respect to departures from normality.



قيم البحث

اقرأ أيضاً

79 - Emilien Joly 2016
We study the problem of estimating the mean of a multivariatedistribution based on independent samples. The main result is the proof of existence of an estimator with a non-asymptotic sub-Gaussian performance for all distributions satisfying some mild moment assumptions.
122 - W. J. Hall , Jon A. Wellner 2017
Yang (1978) considered an empirical estimate of the mean residual life function on a fixed finite interval. She proved it to be strongly uniformly consistent and (when appropriately standardized) weakly convergent to a Gaussian process. These results are extended to the whole half line, and the variance of the the limiting process is studied. Also, nonparametric simultaneous confidence bands for the mean residual life function are obtained by transforming the limiting process to Brownian motion.
The problem of reducing the bias of maximum likelihood estimator in a general multivariate elliptical regression model is considered. The model is very flexible and allows the mean vector and the dispersion matrix to have parameters in common. Many f requently used models are special cases of this general formulation, namely: errors-in-variables models, nonlinear mixed-effects models, heteroscedastic nonlinear models, among others. In any of these models, the vector of the errors may have any multivariate elliptical distribution. We obtain the second-order bias of the maximum likelihood estimator, a bias-corrected estimator, and a bias-reduced estimator. Simulation results indicate the effectiveness of the bias correction and bias reduction schemes.
Data in non-Euclidean spaces are commonly encountered in many fields of Science and Engineering. For instance, in Robotics, attitude sensors capture orientation which is an element of a Lie group. In the recent past, several researchers have reported methods that take into account the geometry of Lie Groups in designing parameter estimation algorithms in nonlinear spaces. Maximum likelihood estimators (MLE) are quite commonly used for such tasks and it is well known in the field of statistics that Steins shrinkage estimators dominate the MLE in a mean-squared sense assuming the observations are from a normal population. In this paper, we present a novel shrinkage estimator for data residing in Lie groups, specifically, abelian or compact Lie groups. The key theoretical results presented in this paper are: (i) Steins Lemma and its proof for Lie groups and, (ii) proof of dominance of the proposed shrinkage estimator over MLE for abelian and compact Lie groups. We present examples of simulation studies of the dominance of the proposed shrinkage estimator and an application of shrinkage estimation to multiple-robot localization.
We develop a new Gibbs sampler for a linear mixed model with a Dirichlet process random effect term, which is easily extended to a generalized linear mixed model with a probit link function. Our Gibbs sampler exploits the properties of the multinomia l and Dirichlet distributions, and is shown to be an improvement, in terms of operator norm and efficiency, over other commonly used MCMC algorithms. We also investigate methods for the estimation of the precision parameter of the Dirichlet process, finding that maximum likelihood may not be desirable, but a posterior mode is a reasonable approach. Examples are given to show how these models perform on real data. Our results complement both the theoretical basis of the Dirichlet process nonparametric prior and the computational work that has been done to date.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا