ﻻ يوجد ملخص باللغة العربية
These are the lecture notes for the DIMACS Tutorial Limits of Approximation Algorithms: PCPs and Unique Games held at the DIMACS Center, CoRE Building, Rutgers University on 20-21 July, 2009. This tutorial was jointly sponsored by the DIMACS Special Focus on Hardness of Approximation, the DIMACS Special Focus on Algorithmic Foundations of the Internet, and the Center for Computational Intractability with support from the National Security Agency and the National Science Foundation. The speakers at the tutorial were Matthew Andrews, Sanjeev Arora, Moses Charikar, Prahladh Harsha, Subhash Khot, Dana Moshkovitz and Lisa Zhang. The sribes were Ashkan Aazami, Dev Desai, Igor Gorodezky, Geetha Jagannathan, Alexander S. Kulikov, Darakhshan J. Mir, Alantha Newman, Aleksandar Nikolov, David Pritchard and Gwen Spencer.
We study the problem of approximating the value of a Unique Game instance in the streaming model. A simple count of the number of constraints divided by $p$, the alphabet size of the Unique Game, gives a trivial $p$-approximation that can be computed
We give a new algorithm for Unique Games which is based on purely {em spectral} techniques, in contrast to previous work in the area, which relies heavily on semidefinite programming (SDP). Given a highly satisfiable instance of Unique Games, our alg
These lecture notes endeavour to collect in one place the mathematical background required to understand the properties of kernels in general and the Random Fourier Features approximation of Rahimi and Recht (NIPS 2007) in particular. We briefly moti
Covering spaces of graphs have long been useful for studying expanders (as graph lifts) and unique games (as the label-extended graph). In this paper we advocate for the thesis that there is a much deeper relationship between computational topology a
We develop a new framework for generalizing approximation algorithms from the structural graph algorithm literature so that they apply to graphs somewhat close to that class (a scenario we expect is common when working with real-world networks) while